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Abstract—Given a set of 3D to 2D putative matches, labeling
the correspondences as inliers or outliers plays a critical role
in a wide range of computer vision applications including the
Perspective-n-Point (PnP) and object recognition. In this paper,
we study a more generalized problem which allows the matches
to belong to multiple objects with distinct poses. We propose a
deep architecture to simultaneously label the correspondences as
inliers or outliers and classify the inliers into multiple objects.
Specifically, we discretize the 3D rotation space into twenty
convex cones based on the facets of a regular icosahedron. For
each facet, a facet classifier is trained to predict the probability
of a correspondence being an inlier for a pose whose rotation
normal vector points towards this facet. An efficient RANSAC-
based post-processing algorithm is also proposed to further
process the prediction results and detect the objects. Experiments
demonstrate that our method is very efficient compared to
existing methods and is capable of simultaneously labeling and
classifying the inliers of multiple objects with high precision.

I. INTRODUCTION

A. Finding Correspondences of Multiple Objects

In this paper, we propose an efficient method to tackle
the problem of finding reliable correspondences of multiple
objects from a set of 3D to 2D putative matches. Ideally,
we want the predicted, good correspondences of an object
to be a subset of the ground truth inliers of that object.
This problem occurs naturally in many computer vision tasks
including the Perspective-n-Point (PnP) problem [1] with
multiple objects and 3D object recognition [2]. After obtaining
inlier correspondences, they can be applied to estimate the
poses of multiple objects [3] and help the system in scene
recognition and understanding [4]. An example of the process
of finding good correspondences is shown in Fig. 1. Here, we
used a color and depth camera (RGB-D camera) to capture
a template image of objects, and then matched points from
the template image to a test image. In this example, we used
the scale-invariant feature transform (SIFT) descriptor [5] for
feature matching. Other descriptors, such as oriented fast and
rotated brief (ORB) [6], speeded up robust features (SURF)
[7], and deep descriptors [8], [9] are also applicable.

Since the 3D rotation can be uniquely determined by a
rotation normal vector and a rotation angle around that vector
[10], our method discretizes the 3D rotation space based on the

Fig. 1: Finding good correspondences of multiple objects. Given a
set of 3D to 2D putative matches between the RGB-D template and
test image, our method will label the inliers and classify them into
multiple objects. In this example, two objects are detected in the test
image and the predicted good correspondences of the two objects are
shown in different colors respectively.

direction of the rotation vector. We put a regular icosahedron in
the origin of the 3D rotation space and use the twenty facets of
the regular icosahedron to define twenty convex cones, where
each convex cone is constructed using three vertex vectors
belonging to the same facet of the regular icosahedron [11].
All rotation vectors that point towards a facet are associated
with that facet and belong to the corresponding convex cone
defined by this facet. Then for each convex cone (or facet of
the regular icosahedron), we train a classifier to identify inlier
correspondences for poses whose rotation normal vector falls
within this convex cone (or points towards this facet of the
regular icosahedron). We say that an object belongs to a facet
when the pose of the object is associated with a rotation vector
pointing towards this facet. Therefore, if objects have distinct
poses, namely, if different objects belong to different facets,
each facet classifier is responsible for classifying the inliers of
at most one object. We discuss how to handle the case when
multiple objects belong to the same facet in Section II-D. The
inlier correspondences identified by the network classifier are
then post-processed to filter out any remaining outlier matches,



and fit a rotation and translation for each detected object.
An important contribution of our method is that we do not

require any costly iterations to identify inlier correspondences,
unlike traditional methods. Instead, inliers are identified by
a single pass through a network, followed by a short post-
processing step. The post-processing step does use an iterative
algorithm, but the number of iterations are very small. As a
result, our method is much faster than competing state of the
art methods. Also, we can handle the case where multiple
objects are present in the scene. In Section III, we show
experimental results on synthetic data as well as a publicly
available dataset.

B. Related Work

Given a set of putative matches, many methods have been
proposed to detect inlier correspondences and fit a model,
among which RANSAC [12] is the de facto standard in
practice [13]. Some extensions of RANSAC include MLESAC
[14] which chooses the solution maximazing the likelihood,
PROSAC [15] which explores hypotheses from a gradually
increasing subset of matches, and USAC [16] which com-
bines multiple RANSAC improving techniques into a unified
framework. Some approaches [17], [18] extend RANSAC to
incorporate multiple objects. However, since these approaches
rely on sampling a small subset of matches to estimate the
hypothesis, as the portion of outliers or noise level increases,
the required number of iterations for hypothesis estimation
increases significantly.

In contrast, learning-based methods have attracted much
interest due to their non-iterative end-to-end processing ap-
proaches [19], [20], [21]. Most learning-based methods for
pose estimation take raw images as the input [22], [23], [24],
[25]. However, [13] shows that this approach is not suitable for
scenes with occlusion and large baselines. For outlier rejection,
[26] proposes a learning-based differentiable counterpart of
RANSAC called DSAC, which tries to mimic RANSAC.

Recently, some approaches have been proposed to use a
network to find inliers among point correspondences. [13]
proposes a network to directly predict inlier probabilities for
2D to 2D correspondences. [27] applies the network of [13] to
the case of 3D to 2D correspondences and achieves promising
results for the Perspective-n-Point (PnP) problem. Our work
is closely related to [13] and [27]. Nonetheless, [13] and
[27] assume there exists only one model or object among the
correspondences, whereas our work allows multiple objects.

The rest of this paper is organized as follows. In Section
II, we propose the learning-based facet network and post-
processing algorithm. Several numerical simulations and an
experiment on real data are reported in Section III. Finally,
we conclude this paper in Section IV.

II. THE PROPOSED METHOD

A. Learning-based Facet Network

As introduced in Section I, we discretize 3D rotation space
into twenty convex cones according to the twenty facets of
a regular icosahedron. For each facet, as shown in Fig. 2,

Fig. 2: The regular icosahedron and three vectors pointing towards
the same facet.

a facet classifier is trained to identify correspondences that
are compatible with a pose whose rotation normal vector
points towards this facet. Thus, there is a bijective relationship
between the 20 facet classifiers and the 20 convex cones
defined by the 20 facets of the regular icosahedron.

Since all the 3D to 2D point correspondences are inter-
changeable, the order of the input correspondences should
not affect the prediction result. Therefore, we adopt the
ResNet block structure proposed in [13], which shares weights
between correspondences and allows different number of
matches as input, to build our facet classifiers as shown in Fig.
3. Specifically, the facet network consists of 20 facet classifiers
of the same structure but different weights. If we have N
putative matches, the input of the facet network is of size
N × 5 where each row stores a 3D to 2D match. Each match
consists of the 3D point from the RGB-D template and its
corresponding normalized 2D point in the test image. A mul-
tilayer perceptron with shared weights is applied to each match
individually and context normalization [13], which implements
normalization on each neuron using information among all
matches, is responsible for embedding global information. The
output is of size N × 20 where the (i, j)-th entry stores the
inlier probability (from 0 to 1) of the i-th match for facet-j.
The outputs of the facet classifiers are passed through a non-
maximum suppression block. This ensures that each row has
at most one non-zero entry, since we assume that each inlier
match can only belong to one facet.

Note that there is a trade off between the number of
classifiers and resolution in the 3D rotation space. Increasing
the number of classifiers by discretizing the 3D rotation space
into more exclusive convex cones would lead to higher rotation
space resolution but requires more training effort. In addition,
an alternative approach is to train a multi-class classifier in-
stead of several binary classifiers as in this paper. Nevertheless,
having several binary classifiers that can be trained separately
and individually provides much more flexibility to the model.
Specifically, if some of the weights are missing or corrupted,
we only need to retrain the specific classifiers with corrupted
weights. Moreover, if we are only interested in the objects
with certain range of rotation or we have the prior knowledge
on the range of rotation for the objects of interest, we don’t
need to apply all classifiers and only the classifiers for the
rotation of interest are sufficient for the object detection.



(a) The structure of the facet network.

(b) The structure of each facet classifier.

Fig. 3: The structure of facet network consists of twenty facet
classifiers of the same structure. (a) The facet network. (b) The
facet classifier where P denotes multilayer perceptron. We apply the
ResNet block structure proposed in [13]. (X,Y, Z)i is the 3D point
in the RGB-D template and (x, y)i is the corresponding, normalized
x and y coordinates of the i-th match in the test image.

B. Network Training

Since each facet classifier is responsible for only one facet
(or convex cone), namely, it identifies whether a 3D to 2D
match is compatible with a pose whose rotation vector lives in
the specific convex cone, the matches which are inliers for one
classifier are outliers for the rest of the classifiers. Therefore,
the 20 facet classifiers are trained separately using the binary
cross entropy loss function.

L = −

[
α1

Nin

N∑
i=1

1i log(pi) +
α2

Nout

N∑
i=1

(1− 1i) log(1− pi)

]
(1)

where Nin and Nout are the total number of inlier and outlier
matches. Nin +Nout = N . 1i is the indicator function which
is 1 when the i-th match is the inlier for the classifier under
training and 0 otherwise. pi is the estimated inlier probability
of the i-th match. α1 = 1 and α2 = 2 are the weights.

For each facet classifier, its training dataset contains 32000
examples where each example consists of 200 3D to 2D
matches. The validation set is of size 320. Each example
contains the matches of multiple objects whose number is
uniformly selected in {1, 2, 3}. At most 1 of them is the
inlier object of the current facet, which provides robustness to
the classifier against outlier objects interference. The matches
belonging to the same object follow the same 3D transfor-
mation. To create the inlier object of a specific facet, we
randomly sampled its rotation vector within the convex cone
associated with this facet using the three vertex vectors [11].
The network is trained using Adam optimization algorithm
[28] with 0.0001 initial learning rate and 32 batch size for

200 epochs. The learning rate would decrease by half if the
loss on the validation set does not decrease for 7 consecutive
epochs. The detailed 3D to 2D matches generation process and
noise information for our experiment are described in Section
III Experiments.

C. Post-processing And Object Detection

After receiving the inlier probabilities, denoted as Win ∈
RN×20, from the facet network, a RANSAC-based post-
processing component is implemented to detect the objects in
the test image and return the correspondences for each of the
detected objects. Specifically, the post-processing component
contains two steps. The first step is adaptive thresholding. If
we assume there are at most k objects in the test image, we
threshold each entry of Win to either 0 (outlier) or 1 (inlier),
starting with a threshold of 0.9 and then gradually decreasing
the threshold value with a step size of 0.05. This process will
stop when we have k columns of Win that have at least n1
non-zero entries, or when the threshold value reaches T1.

The second step is a RANSAC-based clustering step. We
sort the columns of Win based on the number of non-zero
entries in each column. Then starting from the column with the
largest number of predicted inliers, we first fit a rotation and
translation and then verify this transformation using predicted
inliers from all columns. Predicted inliers in other columns
that agree with this transformation will be assigned to the
current examining column. In addition, those confirmed inliers
will be excluded in the following transformation verification
for other columns. This process will repeat until all columns
with at least n2 number of predicted inliers are examined. The
RANSAC-based clustering step can be viewed as RANSAC
with a restricted subset of matches for hypothesis estimation.
Because the inlier portion in each subset is very high af-
ter network prediction and thresholding, the post-processing
component is extremely efficient, requiring very few iterations
(this is verified in the experiments in Section III). The reason
that we verify the transformation using predicted inliers in
other columns is that, due to noise, some ground-truth inliers
belonging to the same object may spread to several facets.
This can happen, for example, if this object’s rotation normal
vector is pointing close to the facet boundary. Any remaining
predicted matches after the clustering step will be discarded.

Thus, the post-processed output denoted as Wout ∈ RN×20

has many zero columns and, ideally, only k columns with a
large number of non-zero entries. Then a simple thresholding
with threshold value T2 on the normalized number of predicted
inliers for each column can be applied to detect the objects.
Here, the normalized number of predicted inliers is defined as
the number of predicted inliers in a facet divided by the total
number of predicted inliers. For the example object shown
in Fig. 1, we show the results of processing in Fig. 4. This
figure shows raw matches, and the normalized number of
predicted inliers for different facets after thresholding and after
clustering respectively.

The hyper parameters of the post-processing should be
set accordingly based on the estimated statistics and noise
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Fig. 4: Post-processing and object detection. (a) Raw matches using
SIFT descriptor. (b) The normalized number of predicted inliers
for different facets after adaptive thresholding. (c) The normalized
number of predicted inliers for different facets after post-processing.
Yellow dotted line shows the threshold T2 for object detection. We
set k = 3, T1 = 60%, T2 = 0.1, n1 = 20, and n2 = 10.

level of the data. Specifically, k should be set to be the
estimated, largest number of objects among the matches and
n2 represents the minimal number of matches expected for
each object. n1 should be set slightly greater than n2 to allow
for some contaminated inliers prior to the post-processing
step. Note that due to the false negative prediction caused by
the noise and network error, n2 is normally smaller than the
ground-truth statistics of the data. T1 represents the desired
minimal probability of each predicted match being an inlier,
which should be set higher when the noise level is low.
T2 should be set slightly less than the estimated, mininal
normalized number of inliers of the objects.

D. Discussion

In this paper, we assume objects to have distinct poses;
namely, different objects have their rotation normal vectors
pointing towards different facets, so that each peak in Fig.
4 corresponds to one object in the test image. If there exists
several objects with normal vectors that point towards the same
facet, we find that one potential solution is to train another
angle network which consists of multiple angle classifiers.
Specifically, each angle classifier is responsible for detecting
correspondences for poses that have the rotation angle around
the normal vector falling in a specific angle range. Then by
combining the results from the facet and angle networks, one
can classify several objects belong to the same facet in a non-
iterative manner. Alternatively, one can implement RANSAC
sequentially on the predicted inliers belonging to the same
facet, and set the stop criterion based on a pre-set minimum
number of inliers for each object.

III. EXPERIMENTS

In this section, we report the results of several numerical
simulations and an experiment on the GMU kitchen dataset
[29]. To train our network1, we generate a synthetic training
dataset of 32000 examples and a validation dataset of 320 with
outliers and noise as described in Section II-B. We follow the
data generation procedure described in [27] for PnP and extend
it to the case of multiple objects. Specifically, each example
comprises 200 3D to 2D matches. The number of objects in
each example and the inlier portion of each object is uniformly
selected in {1, 2, 3} and between [0.2, 0.3] respectively. We
first generate 3D points in camera coordinates whose X , Y ,
Z are uniformly sampled from the ranges of [−1, 1], [−1, 1],
and [4, 8] respectively. Then using the intrinsic parameters
fx = fy = 800, xc = 320 and yc = 240, we project the
3D points onto the 2D image and add Gaussian noise with 5
pixels standard deviation. For those matches belonging to the
same object, we set their ground-truth translation of the camera
pose as their centorid and randomly set the rotation. Matches
that do not belong to any objects have random translation and
rotation.

Metrics. For simulations, we generate a testing dataset of
1000 examples. For each example, we calculate the inlier
detection precision and recall, and record the average number
of RANSAC iterations in the post-processing step and the
average time consumption (unit: second) using a GTX 1080
GPU for network inference and an i7-6700 CPU for post-
processing. Inlier detection precision is defined as the number
of detected ground-truth inliers divided by the number of
predicted inliers. Recall is defined as the number of detected
ground-truth inliers divided by the number of all ground-truth
inliers.

Compared methods. We implement sequential RANSAC
[18], [30] which applies RANSAC to detect each object
sequentially, and removes the inliers from the dataset as each
transformation is detected. If the number of objects is one,
sequential RANSAC is equivalent to classical RANSAC. In
addition, we train the inlier prediction network proposed in
[13]. Since they assume there is only one object in each
example, we retrain their network so that it predicts the
inliers without classifying them into different objects. Then
a sequential RANSAC post-processing is performed to fit
the transformations of multiple objects. Moreover, since their
network is deeper than our facet network, we train it with
a training dataset of 64000 examples. And if not explicitly
stated, we set k = 3, T1 = 60%, T2 = 0.1, n1 = 20, and
n2 = 10 for our approach. Note that both sequential RANSAC
as well as the network of Yi et al. [13] followed by sequential
RANSAC require knowledge of the ground-truth number of
objects, which controls the number of transformations they
want to fit. For fairness and to study the performance of inlier
prediction and object detection of our method individually,
in Section III-A and III-B, we directly pick the n largest

1Code is available at https://github.com/youyexie/Learning-To-Find-Good-
Correspondences-Of-Multiple-Objects



peaks from the post-processed normalized number of predicted
inliers for different facets to calculate the metrics, where n is
the ground-truth number of objects. In Section III-C, we study
the object detection performance of our method individually.
For the real data, the ground-truth number of objects is not
provided.

A. Finding Correspondences Of One Object

We first study the simple case where there is only one object
with 30% inlier portion in each example of the testing dataset,
with 2 pixels standard deviation Gaussian noise. Since the
network of Yi et al. [13] predicts weights for each match, an
inlier detection threshold is needed. We adjust this threshold
so that they achieve similar recall to our method. Since in
the one object case the standard deviation of the noise is not
very large, we set T1 = 70%. The result is recorded in Table
I, from which we can observe that all methods achieve over
99% precision and over 75% ground-truth inliers are detected.
However, our method requires a much smaller average number
of iterations compared to others.

TABLE I: Finding correspondences of one object.

Precision Recall Average number of iterations
RANSAC 99.9% 80.4% 374.3

Yi et al. [13] 99.8% 75.4% 24.4
Our method 99.2% 75.7% 17.5

B. Finding Correspondences Of Multiple Objects

Now we turn to the case of multiple objects, where each
example of the testing dataset contains 3 objects with distinct
poses and the same inlier portion of 30%. Thus, the outlier
portion is 10% and the pseudo-outlier [31] portion, which is
defined as the outlier portion to each object, is 70%. We set
the inlier detection threshold as 0.5 for Yi et al. [13]. We vary
the standard deviation of the Gaussian noise and record the
results in Fig. 5. Under severe noise, some inliers are heavily
contaminated and that explains the significant drop of recall
as the noise standard deviation increases.

From the results we can observe that although our method
is slightly inferior to sequential RANSAC and Yi et al. [13]
in terms of inlier detection precision and recall, our method
nevertheless achieves over 94.2% precision under severe noise
and large pseudo-outlier interference. More importantly, our
method is around 15× faster than Yi et al. [13] and 20× faster
than sequential RANSAC in terms of the average number of
iterations and average time consumption when the standard
deviation of noise is 5 pixels. In addition, the average time
consumption of our method is below 0.1 second per example
consisting of 200 3D to 2D matches. This is due to the fact
that the feed-forward classifier network is very efficient and
effective in predicting inliers, thus reducing the number of
iterations required by the RANSAC-based post-processing step
and total processing time. To further verify the efficiency of
our method, a similar experiment fixing the Gaussian noise
standard deviation to 2 pixels and varying the inlier portion of
each object is also implemented, and the average number of

iterations and time consumption are recorded in Fig. 6. These
results confirm that our method is substantially faster than the
other two methods, in terms of the number of iterations and
average time consumption.
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(b) Average time consumption.
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(c) Precision of inlier detection.
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(d) Recall of inlier detection.

Fig. 5: Finding correspondences of multiple objects with varying
standard deviation of the additive noise.
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(b) Average time consumption.

Fig. 6: The effect of the inlier portion of each object on the average
number of iteration and time consumption.

C. Object Detection Performance

Besides being very efficient, our method can detect multiple
objects among correspondences automatically and we examine
the object detection performance in this section. Each example
of the testing dataset has the ground-truth number of objects
uniformly sampled from {1, 2, 3} and all objects have the
same inlier portion. When 20% of the inliers of an object are
detected, we count it as a success detection and we define the
object detection accuracy as the number of detected objects
divided by the total number of objects. The object detection
accuracy under different noise level and inlier protion of each
object is recorded in Fig. 7, which shows that our method can
detect the objects very accurately.
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Fig. 7: The object detection accuracy with different Gaussian noise
standard deviation and inlier portion of each object.

D. Performance on GMU Kitchen Dataset [29]

In the last experiment, we implement our method on the
GMU kitchen dataset [29] which consists of multiple kitchen
scenes. Specifically, we take two images from scenes 1 and 7
as the RGB-D templates and several images from the rest of
the scenes as the test images. Then based on the distribution
of the 3D points in the templates and the provided intrinsic
matrix, we generate a synthetic training dataset to train our
facet network. SIFT descriptors [5] are applied for the feature
matching. The inlier prediction results of multiple objects on
GMU Kitchen Dataset are shown in Fig. 8 and 9, in which
different colors of correspondences indicates different detected
objects. The promising results imply that by slightly adjusting
the synthetic training dataset, our method is capable of simul-
taneously finding the good correspondences and classifying
them into multiple objects on real data.

(a) RGB-D template

(b) (c)

(d) (e)

Fig. 8: Finding good correspondences on GMU kitchen dataset. (a)
shows the RGB-D template. (b) and (d) are the raw matches using
SIFT descriptor and the results are shown in (c) and (e) respectively.



(a) RGB-D template

(b) (c)

(d) (e)

(f) (g)

Fig. 9: Finding good correspondences on GMU kitchen dataset. (a)
shows the RGB-D template. (b), (d), and (f) are the raw matches using
SIFT descriptor and the results are in (c), (e), and (g) respectively.

IV. CONCLUSION

In this paper, we propose an efficient method consisting of
a learning-based facet network and a RANSAC-based post-
processing step to accurately find good correspondences of
multiple objects with distinct poses, given a set of 3D to 2D
putative matches. We discretize the 3D rotation space using

a regular icosahedron, and for each facet of the icosahedron,
a classifier is trained to identify inlier correspondences for
poses that have a rotation normal vector pointing towards the
facet. According to our experiments, the proposed method is
extremely efficient compared to existing methods and is able
to simultaneously identify inliers and detect objects accurately.
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