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Abstract

Recognizing three dimensional chess pieces using com-
puter vision is needed for an augmented reality chess assis-
tant. This paper proposes an efficient 3D pieces recognition
approach based on oriented chamfer matching. During a
real game, the pieces might be occluded by other pieces
and have varying rotation and scales with respect to the
camera. Furthermore, different pieces share lots of similar
texture features which makes them more difficult to identify.
Our approach addresses the above problems and is capa-
ble of identifying the pieces with different scales, rotation
and viewing angles. After marking the possible chessboard
squares that contain pieces, the oriented chamfer scores
are calculated for alternative templates and the recognized
pieces are indicated on the input image accordingly. Our
approach shows high recognition accuracy and efficiency
in experiments and the recognition process can be easily
generalized to other pattern recognition applications with
3D templates. Our approach outperforms the convolution-
al neural networks under severe occlusion and low resolu-
tion conditions and has comparative processing time while
avoids the time consuming training process.

1. Introduction

Augmented reality (AR) can greatly improve the effec-
tiveness of people in work and play. It can automatical-
ly recognize objects using computer vision techniques and
display graphical augmentation registered to the object, to
provide guidance and instruction. AR has been widely ap-
plied in education [1], industrial design and medical treat-
ment [2]. AR can also help people learn the game of chess,
a popular intellectual and entertaining game all over the
world. For example, the system could display allowable
moves as an overlay on an image of the board, using either
a hand-held or a head-mounted display. In order to do this,
a chess AR system must first recognize the chessboard and

the chess pieces, from a mobile hand-held or head-mounted
camera, and locate the pieces on the board. The task can
be challenging if the board is viewed from a low viewing
angle, instead of directly overhead. This may cause pieces
to partially occlude each other. Additionally, some pieces
are highly similar to each other, such as the rook and pawn,
which may lead to misidentification.

This paper focuses on the problem of recognizing differ-
ent 3D chess pieces from a single image of the chessboard,
under game conditions. We use a chamfer matching ap-
proach, which permits flexible operating angles and allows
for different occlusion conditions. Furthermore, our method
has potential in other applications. For example, in many in-
dustrial applications, the objects to be recognized are small
with relatively little image texture [3] and CAD models are
often not available or are difficult to obtain. In these cas-
es, taking a small number of training images is feasible and
our method is applicable to these problem domains. The
paper is organized as follows. In section 2, we describe re-
lated work. In sections 3 and 4, we present our approach
for chessboard and chess piece recognition, respectively. In
section 5, we show experimental results and a comparison
to an alternative approach using convolutional neural net-
works (CNNs). We conclude this paper in section 6.

2. Related Work

Many algorithms have been developed to recognize a
chessboard for the purpose of camera calibration and 3D
scene reconstruction. Most of these use the approach of
detecting corners on the board [4, 5]. However, when
the chessboard is populated with chess pieces, such as
during an actual game, many corners might be occluded
by pieces. Therefore, algorithms for recognizing populat-
ed chessboards typically use line detection based methods
[6, 7, 8].

The research on chess piece recognition is sparse. Early
approaches modified the chessboard and pieces with sen-
sors [9]. However, modified chessboards and pieces are



Figure 1: The SIFT features matching for the bishop. 2010 and
1211 SIFT features are extracted from left and right images re-
spectively but only 40 matched features pairs are found.

expensive and not portable. Fortunately, with the rapid in-
crease of computing power on mobile devices, an opportu-
nity exists to apply computer vision methods to chess piece
recognition, which is inexpensive and transferable.

Conventional approaches to object detection extract and
match features such as the histogram of oriented gradient
(HOG) [10] and the scale invariant feature transform (SIFT)
[11]. These techniques work well when the objects have
adequate visual texture. However, as shown in Fig. 1, very
few effective SIFT features can be extracted from the small
chess pieces since they do not have much distinguishable
textures. Moreover, similar features among pieces com-
plicate the matching process. In order to avoid incorrect
matching, [12] and [13] assume the initial positions of the
pieces are known, and then track the movement of pieces
on the chessboard. However, those assumptions are unde-
sirable and we want as few manual operations as possible.

Fortunately, although there is not much distinctive tex-
ture on the pieces, the different pieces have distinctive con-
tours. A contour-based recognition method can match the
observed contour to a template contour that is obtained from
a model of the piece, or from a training image. By exploit-
ing the relative positions of the edge points and normalizing
the magnitudes, contour-based descriptors can be scale and
rotation invariant like the Fourier descriptor with different
shape signatures [14] and the context shape [15]. However,
they also face some challenges. Methods using Fourier de-
scriptors or polygonal approximations [16] may be affected
severely when pieces have similar shapes or when occlusion
occurs. A contour based method that is more robust to these
effects is oriented chamfer matching [17, 18], and this is the
method we selected.

Besides the above methods, convolutional neural net-
works have recently achieved great success in image classi-
fication and object detection problems [19, 20, 21], on large
scale data sets like the ImageNet [22]. Therefore, we also
implement several convolutional neural networks and com-
pare them to our oriented chamfer matching approach. As
far as we know, this is the first paper applying a convolu-
tional neural network approach to the problem of 3D chess
piece recognition under game conditions.

3. Chessboard Recognition

Chessboard recognition is an important first step toward-
s piece recognition, since finding the board constrains the
search for pieces. Additionally, we need to find the board
in order to determine the relative locations of the pieces
with respect to the board. As stated in the introduction,
there are many chessboard recognition algorithms but on-
ly a few consider populated boards where the pieces cause
occlusion. We chose to use a line detection based method
since it is rare that a board line is completely occluded
by the pieces. Specifically, we use the algorithm of [8]
which achieves a high chessboard recognition success rate
and more importantly, their workable viewing angles range
covers the angles that a player would naturally look at the
chessboard during a game. We briefly introduce their algo-
rithm as follows.

Given a chessboard image, the Canny edge detector and
Hough transform are used to find all possible lines in the
image. The detected lines are clustered into two groups
based on their locations in a scaled Hough transform space.
These two groups correspond to the two orthogonal sets of
lines on the chessboard. In the same space, outlier lines are
filtered out by observing the relation between the detect-
ed lines. The intersections of two groups of remaining lines
are calculated and recorded. Finally, all possible chessboard
location candidates are transformed and matched to a chess-
board reference model. The location with largest number of
correct matching corners and the smallest matching residual
error becomes the system output.

Once the chessboard lines are found, we need to find the
pose of the board with respect to the camera, in order to
predict the possible locations and appearance of the chess
pieces. This requires the camera intrinsic parameter matrix
K, and the board-to-camera rotation matrix RC

B (R is used
to indicate RC

B in the following content). These two matri-
ces can be estimated from the vanishing points of the two
sets of chessboard lines by solving the following equations
[23].

Rx = K−1

x1y1
1

 Ry = K−1

x2y2
1

 (1)

K−1 =

 1
f 0 − cx

f

0 1
f − cy

f

0 0 1

 (2)

< Rx, Ry >= 0 (3)

whereRx andRy are the board coordinate system’s bases in
x and y directions. (x1, y1) and (x2, y2) are the vanishing
points coordinates on the image plane. In addition, cx, cy
and f are the optical center of the image and the camera
focal length in pixels. Finally, the last column of the rotation



Figure 2: The chessboard preprocessing result. The board bound-
aries are marked by green lines and the normal vector of each
square is indicated using a blue stick.

matrix, Rz , can be obtained by taking cross product of Rx

and Ry .
Since we only have a single image of the chessboard, un-

less we know the size of the chessboard, there is no way to
find out the true object scale. Therefore, we define a hyper-
plane using the board coordinate system’s Rz basis as the
support vector and a fixed constant to control the scale fac-
tor automatically. Based on the hyperplane and the rotation
matrix, the normal vector for each square can be calculat-
ed and printed on the image as shown in Fig. 2 using blue
sticks.

4. Piece Recognition
Once the pose of the chessboard has been found, the pose

of each square can be estimated. This is needed to rotate
and scale the templates that are used for matching. We will
focus on piece recognition in the following sections.

4.1. Piece Location & Color Detection

Before matching templates, we want to determine pos-
sible piece locations in order to reduce the computation
complexity. By leveraging the four chessboard corners in a
homography transformation, an orthophoto (i.e., top-down
view) of the chessboard is generated as shown in Fig. 3.
Possible squares where pieces might be located are deter-
mined by counting the number of edge points in the areas
that are indicated by green rectangles. An eight times eight
matrix stores the possible squares occupied by pieces.

When the board is viewed from a very low angle, one
chess piece might occupy several squares in the orthophoto
like the bishop in Fig. 3 which covers both the square it
occupies and the square behind it. In this case, a false in-
dication of occupancy may occur. So a chamfer matching
score threshold operation is implemented to avoid a false
positive detection.

We next locate areas of interest (AOI) in the original im-
age that may contain chess pieces. The size of an AOI in the
image is relative to the viewing angle of the board. When
the chessboard image is taken from a relatively low angle,

Figure 3: Left: Orthophoto of the board. Right: Search regions for
occupied squares.

pieces are taller than in a direct overhead view. So a lower
viewing angle leads to a larger AOI height. The height of
the AOI must be large enough to contain the image of the
largest pieces, which are the king and queen. The width of
the AOI is set to the width of the corresponding square on
the board.

Figure 4: The AOIs in the input image.

We can determine the color of the pieces at this stage
as well. Since we know the locations of the squares, we
can find the average intensities for both black, Ib, and white
squares, Iw. Each candidate’s color is initiated to the square
color which it stands on. The final decision can be easily
made by comparing each candidate square’s intensity, Iij ,
to Iw and Ib.

Pij =


Black, if Iij < kwIw, square (i, j) is white
White, if Iij > kbIb, square (i, j) is black
same as the (i, j) square’s color

(4)

where Pij indicates the color of the piece associated with
the (i, j) square on the chessboard. kw and kb are scaling
factors and in our project, kw = 0.7 and kb = 1.

4.2. Template Preparation

Three steps are performed in preparing the templates for
matching. First, selecting the template based on the viewing
angle. Second, rotating the template based on the normal
vector. Third, scaling the template based on the square size.

For each chess piece, 12 templates with different view-
ing angles are captured as shown in Fig. 5. They range



from 10 to 70 degrees, where the template viewing angle is
defined in Fig. 6. Note that the knight is not symmetrical
around its vertical axis, so additional templates are needed
for this piece to represent its appearance for rotations about
the vertical axis. However, for simplicity, we assume all
the knights are facing right and therefore only 12 templates
are applied in this paper. During recognition, the viewing
angle of the square being examined is calculated, and the
templates nearest to that angle will be selected for the fol-
lowing translation and matching.

Figure 5: The bishop templates for chamfer matching.

Furthermore, the pieces do not always lie vertically and
have varying sizes in the images due to their positions with
respect to the camera. In the case that a piece is not vertical
in the input image, we will rotate the templates accordingly
as shown in Fig. 7 and scale it to fit into the observing
square.

Figure 6: The viewing angle.

Figure 7: The selected and translated pawn’s template.

4.3. Oriented Chamfer Matching

As previously stated, we use a contour-based recognition
method because of the lack of texture features. Chamfer
distance matching, originally proposed in [24], is a well-
established contour matching technique which measures

the similarity between the objects in the input image and
templates. For every candidate object position, a chamfer
matching score is calculated. The object’s class and loca-
tion are determined by the template and the region that get
the minimum chamfer matching score.

The traditional chamfer matching requires the edge im-
ages for both the input image, I , and the template, T . The
chamfer distance can be obtained by solving the following
least square problem where |T | is the number of total edge
points in the template and τ is the truncation parameter for
normalization. In our project, τ = 30.

ddist(x) =
1

τ |T |
∑
xt∈T

min(τ,min
xi∈I
||(xt + x)− xi||2).

(5)

For a specific matching starting point x in the input image,
the chamfer distance score is the average distance between
the template edge points and their nearest edge points in
the input image. Furthermore, the above least square prob-
lem can be solved efficiently by mapping the desired tem-
plate’s edge image onto a pre-computed input image’s dis-
tance transformation image and summing up the element-
wise product of pixel intensities within the template covered
region.

To provide additional stability and resistance to back-
ground noise, edge orientation is adopted to compare the
gradient differences [17, 18]. The orientation score can be
calculated by solving the following least square problem
where φ is a function measuring the edge point’s orienta-
tion in radians. The physical meaning of φ and ddist in the
input image can be found in Fig. 8.

dorient(x) =
2

π|T |
∑
xt∈T

|φ(xt)−

φ(argmin
xi∈I
||(xt + x)− xi||2)|. (6)

Similarly, the orientation score can also be calculated ef-
ficiently using the pre-computed gradient images. The final
chamfer score is calculated by:

dscore(x) = (1− λ)ddist(x) + λdorient(x), (7)

where λ is a weight factor in the range of [0, 1]. In our
project, λ = 0.5 and the detailed analysis regarding differ-
ent values of λ can be found in the section 5.6. A perfect
matching would get a score of 0. After template matching,
the template with smallest oriented chamfer matching score
and its corresponding location will be marked on the input
image for each AOI. Templates with high scores are reject-
ed.

4.4. Matching Process

The matching process is quite straight forward. For each
AOI, all templates taken from the angle that matches the



Figure 8: The oriented chamfer matching.

observing square’s viewing angle are selected and translat-
ed for chamfer matching. A list stores the chamfer scores
for all different templates and records the template with the
minimum score. In addition, to expedite the matching pro-
cess, an N -sampling strategy is applied. Namely, we com-
pute the chamfer score with a stride of N pixels if we are
in a high score area, but compute the score at every pixel in
the low score areas. The idea is to focus our computational
resources on the most promising piece locations. After fin-
ishing all AOI matching, the recognition results including
the pieces colors, names and their corresponding locations
are shown on the input image as shown in Fig. 9.

Figure 9: The recognition result.

We can reject invalid piece detections by a threshold on
the chamfer matching score. To determine this threshold,
we recorded the oriented chamfer matching scores for dif-
ferent templates and true classes for a typical image in Table
1. Based on the table, 0.2 is a reasonable threshold to rule
out a false positive detection.

5. Experiments

We tested our approach and compared it to several alter-
native approaches based on convolutional neural networks,
on a series of real chessboards taken from varying angles
and different resolutions. In addition, we quantify the effect
of occlusion and pan angles and evaluate their processing
time. Furthermore, we study the performance with different
algorithm parameters. Examples of input images and the
recognition results are shown in Table 2.

5.1. Experimental Setup

In order to imitate the views that a player would natu-
rally have during a real game, the viewing angle of the test
images is approximately 40 degrees using the definition in
Fig. 6. The sampling mode is 3-sampling and λ = 0.5.
Thirty test images are taken and the number of pieces by
type is shown in Table 3.

Table 3: The pieces distribution of the test set.

Board King Queen Bishop Knight Rook Pawn
30 43 32 76 63 98 173

In addition, several test sets with same piece distribution
but different occlusion conditions and pan angles are col-
lected. In all test sets, we assume there is no piece directly
behind another since we will study the effect of occlusion
individually.

5.2. Convolutional Neural Networks

In this experiment, we selected three of the most popu-
lar convolutional neural networks, GoogleNet [19], ResNet
[20] and VGG [21], to compare with the oriented chamfer
matching approach. Furthermore, the research of transfer
learning shows that the learned CNN features are transfer-
able among similar tasks [25]. Therefore, all the selected
networks are pre-trained on the ImageNet [22] classification
data set for initialization. And to adapt to the piece recogni-
tion application, the networks’ last layers are replaced by a
softmax regression with six output nodes and all test images
are resized to 223× 223× 3 pixels accordingly. The Adam
optimization algorithm [26] is applied with 0.001 learning
rate and 1000 maximum iteration number. To train the sys-
tem, we took 20 additional chessboard images and extract-
ed the pieces as the training set which contains pieces im-
ages with varying viewing angles and colors. The number
of training images for each piece type is listed in Table 4
and four bishop training examples are shown in Fig. 10.

Table 4: The number of training images of each piece type for
convolutional neural networks and oriented chamfer matching.

Convolutional neural network
King Queen Bishop Knight Rook Pawn

40 40 40 40 40 60

Oriented chamfer matching
King Queen Bishop Knight Rook Pawn

12 12 12 12 12 12

In the first experiment, we train and evaluate the neu-
ral networks and oriented chamfer matching’s performance
on images where the pan angle of the camera (the rotation
about the vertical axis) with respect to the board is zero de-
grees. Pieces have less than 10% occlusion and the resolu-



Table 1: The oriented chamfer matching scores.

True class \ Template King Queen Bishop Knight Rook Pawn
King 0.1285 0.1705 0.2201 0.2041 0.1930 0.2050

Queen 0.1537 0.0605 0.1969 0.1731 0.1674 0.2016
Bishop 0.3044 0.3482 0.0764 0.2007 0.1270 0.1669
Knight 0.3283 0.3473 0.2550 0.0925 0.1820 0.1868
Rook 0.1992 0.1838 0.1288 0.1871 0.0860 0.1389
Pawn 0.2809 0.2701 0.1899 0.2605 0.1994 0.0794

Empty square 0.3083 0.2619 0.2754 0.2778 0.2588 0.2754

Table 2: The 3D chess pieces recognition experiments. The first row shows the recognition process of a 720×960 pixels test image. The
second row shows the recognition process with a 240×320 pixels test image. The third row shows the 60% occlusion image’s recognition
process and the last row shows the recognition process on a test image with a 30 degree pan angle.

Input images Preprocessing Templates matching Recognition result

Figure 10: Four bishop training examples for CNN.

tion of the images is 720 × 960 pixels. Their recognition
accuracy is recorded in Table 5 from which we can observe
that all approaches perform quite well at piece recognition.
The oriented chamfer matching method achieves 95.46%

accuracy which is better than ResNet50 but slightly worse
than GoogleNet and VGG-16. However, to achieve this per-
formance, the neural networks require 3.6 times larger train-
ing set than the oriented chamfer matching.

5.3. Effect of Resolution

In this section, we evaluate the effect of image reso-
lution. We use 120, 240, 360, 480 and 720 to indicate
120×160, 240×320, 360×480, 480×640 and 720×960
resolution test sets respectively and record both the convolu-
tional neural networks and the oriented chamfer matching’s



Table 5: The recognition accuracy for different approaches.

King Queen Bishop Knight Rook Pawn Overall
GoogleNet 97.67% 100.00% 100.00% 100.00% 97.96% 96.53% 98.14%
VGG-16 100.00% 90.63% 97.37% 98.41% 87.76% 99.42% 96.08%
ResNet50 88.37% 100.00% 100.00% 100.00% 81.63% 97.69% 94.43%

Oriented Chamfer 90.70% 90.63% 85.53% 100.00% 95.92% 100.00% 95.46%
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Figure 11: The recognition accuracy with different resolutions.

overall recognition accuracy in Fig. 11.
The oriented chamfer matching outperforms convolu-

tional neural networks when the images are taken by a low
resolution camera. It may be that the low resolution test im-
ages lose the features that neural networks learned from the
high resolution training images.

5.4. Effect of Occlusion and Pan Angle

The above two experiments are evaluated on the test set
with no or slight occlusion (< 10% occlusion). To quanti-
fy the occlusion effect, we select several test images where
all pieces are successfully recognized and start occluding
the pieces with a 10% interval. Specifically, 60% occlusion
means 60% area of the pieces from the bottom is occlud-
ed and an example is shown in the 3rd row in Table 2. The
overall accuracy for both convolutional neural networks and
oriented chamfer matching under different occlusion condi-
tions is recorded in Fig. 12. As expected, accuracy decreas-
es as the occlusion effect becomes stronger. We observe that
under severe occlusion (≥ 60%), oriented chamfer match-
ing outperforms the convolutional neural networks. It is
possible that the convolutional neural networks might per-
form better in these cases if the training set included many
more examples of occluded pieces.

Finally, in a real usage scenario, the camera may pan
around the chessboard. Therefore, we also evaluate the ap-
proaches with different pan angles in Fig. 13. It can be
observed that panning the camera away from the zero angle
brings down the accuracy. The oriented chamfer matching
achieves similar accuracy to GoogleNet while outperforms
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Figure 12: The recognition accuracy with different percentages of
occlusion.
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Figure 13: The recognition accuracy with different pan angles.

the VGG-16 and ResNet50.

5.5. Processing Time

Regarding the efficiency, we evaluate the convolutional
neural networks and oriented chamfer matching in terms of
the processing time and they are implemented using Tensor-
Flow [27] and Matlab respectively on an i7 6700K CPU. For
the oriented chamfer matching, two major factors affecting
the processing time are the sampling method and the image
resolution. By manipulating these two factors, we acquire
the average processing time of oriented chamfer matching
for different settings in Table 6. Lower resolution implies
smaller searching area and the same applies for the sam-
pling method. The convolutional neural networks’ testing
time is also recorded in Table 6. We find that if we choose



Table 6: The processing (testing) time for recognizing 10 pieces (unit: second). Different resolution images should lead similar testing
time for neural networks since after preprocessing, all images would have the same dimension.

Oriented Chamfer 120 240 360 480 720
0-Sampling 1.3776 1.4578 1.9259 3.4092 7.2975
3-Sampling 1.3932 1.4472 1.8124 3.0181 5.3851
6-Sampling 1.3975 1.3809 1.7419 2.8735 4.7469
9-Sampling 1.3796 1.3772 1.6405 2.7951 4.3742

12-Sampling 1.3719 1.3723 1.6662 2.6239 4.1666

Network Time
GoogleNet 1.2181
VGG-16 8.2453
ResNet50 3.1680
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Figure 14: The recognition accuracy with different sampling meth-
ods and resolutions.

9-sampling method for the 720 resolution test set, the ori-
ented chamfer matching has comparable processing time to
the neural networks.

In addition, there is a tradeoff between processing time
and accuracy for oriented chamfer matching. To visualize
the tradeoff, we evaluate the overall accuracy for different
settings in Fig. 14. In the low resolution, the width of each
piece is too short to capture useful edge structures and the
12-sampling method might skip the ground true locations.
Both cases lead very low overall accuracy.

5.6. Lambda

Another important factor in the oriented chamfer match-
ing is the parameter λ, which controls the weighting of the
distance score to the orientation score. When λ = 0, the
oriented chamfer matching degenerates to the chamfer dis-
tance matching [24]. When λ = 1, only the orientation
term is applied. We examine and record the overall accura-
cy with different λ in Fig. 15. The accuracy with zero λ is
far smaller than other settings. Because in a noisy edge im-
age, the distortion of the templates combing with the false
edge points may lead the false matching while the orien-
tation term provides an effective guideline to rule out this
situation. In addition, λ = 0.5 achieves the highest accu-
racy in most cases which makes it an excellent choice for
pieces recognition.
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Figure 15: The recognition accuracy with different values of λ.

6. Conclusion

In this paper, we present an approach for 3D chess piece
recognition using oriented chamfer matching. After recog-
nizing the chessboard, we can select the appropriate tem-
plates for matching and compute the oriented chamfer score
efficiently. We quantify the effect of resolution, occlusion
and pan angles, analyze the processing time and accuracy
tradeoff and examine the effect of different algorithm pa-
rameters. We also implement the convolutional neural net-
works for comparison. In experiments, the chamfer match-
ing approach achieves similar performance as the convolu-
tional neural networks, but uses a much smaller training set
and avoids the time consuming training process. In addi-
tion, the oriented chamfer matching is more robust in severe
occlusion and low resolution cases. This result may follow
from the fact that in the chamfer matching method, we ex-
plicitly give the system information on what features belong
to the object, but in the convolutional neural networks, the
system must learn what is object versus background from
training examples. It is possible that if more training exam-
ples were used, the performance of the convolutional neural
networks might improve in severe occlusion and low res-
olution cases. However, the collection of labeled training
images is time consuming and a burden for the user. Since
the performance of the two approaches is otherwise compa-
rable, this might indicate the choice of the oriented chamfer
matching approach.
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and X. Zabulis, “T-less: An rgb-d dataset for 6d pose esti-
mation of texture-less objects,” in Applications of Computer
Vision (WACV), 2017 IEEE Winter Conference on, pp. 880–
888, IEEE, 2017.
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