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ABSTRACT

In this paper, we implemented and validated a workflow modeling
approach that is able to model a sequence of procedures to achieve a
complex task to enable an AR-based automated task guidance sys-
tem. We formulated automated task guidance as a decision making
problem, based upon the general Partially Observable Markov Deci-
sion Processes (POMDP) paradigm as the foundation. Our approach
is able to provide actionable information to actively instruct users
through a complex multi-step task. Our method can also plan ahead
an action sequence that is optimal in the long term, while maintain-
ing flexibility to deal with changes in an uncertain environment. We
validated our approach in the applications of copy machine inspec-
tion and compressor startup guidance. The experimental results have
shown the effectiveness of our planning-based workflow models in
real-world applications.
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1 INTRODUCTION

Maintenance is an typical task in industrial and daily life. To deal
with the problem of maintenance errors and lack of expertise, what is
needed is an automated maintenance guide, to actively guide novice
users through the task, and monitor the user’s actions to check if
all steps are being followed. Recently, augmented reality (AR) has
shown great potential to improve the effectiveness of personnel in
performing maintenance tasks, resulting in improved results in terms
of reduced task time and reduced number of errors [2,7, §].

To enable an AR-based system for automated guidance, modeling
the workflow of a maintenance task is critical. The workflow can be
defined as a sequence of actions necessary to complete a well-defined
complex task. Traditional approaches to model task workflow are
typically based upon Hidden Markov Models (HMM) or Dynamic
Bayesian Networks (DBN) [1, 5, 6], which however only encode the
temporal relationship of object states (i.e., the configuration of the
object determined by the presence or position of subparts). Thus,
such approaches are typically not able to provide directly actionable
information for task guidance.

In this paper, we develop and implement an alternative approach
for modeling workflow to provide actionable information to enable
AR task guidance for a wide variety of tasks. Different from HMM
or DBN-based methods, our workflow modeling method is designed
following a general Bayesian planning paradigm named Partially
Observable Markov Decision Processes (POMDP) [4], which mod-
els time dependencies of both states and actions. We construct our
Planning-based Workflow Model (PWM) using sequences of actions
provided by domain experts and automatically recognized object
states [3]. The contribution of this poster paper is the implementation
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of PWM and the validation of its effectiveness in two real-world
automated task guidance applications.

2 BACKGROUND FOR PWM

We formulate automated task guidance as a decision making problem.
Specifically, following the general POMDP paradigm, the PWM is
represented by a tuple (S,A,T,R,Q,0,7).

¢ §: afinite set of states that encode the configurations of a targe
object needed to be maintained;

* A: afinite set of actions that can change the object configura-
tions;

o T: transition function, a set of conditional transition probabili-
ties between states. T'(s'|a, s) is the probability that the system
will end up in state s after taking action a in state s;

* Q: afinite set of observations from noisy sensors;

« O: observation function O(o|s’,a), which is a conditional ob-
servation probability that the system receives observation o
after taking action @ and getting into state 5;

* R:SXA — R, such that R(s,a) is the immediate reward re-
ceived when the system takes action a in state s;

¢ 7: discount factor that considers long-term rewards.

Because the system does not directly know the true state of the
object, it must make decisions under uncertainty of true states that
need to be estimated from noisy sensory data. Through observing
the object, PWM needs to update its belief in the true state through
updating the probability distribution of the current true state. We
define this probability distribution as belief, denoted as b(s), which
denotes the probability that the object is in state s. Then, PWM needs
to update its belief upon taking action a and observing o. Since the
state sequence is Markovian, maintaining a belief over them solely
requires knowledge of the previous belief state, the taken action,
and the current observation, which can be denoted as b’ = 7(b,a,0).
Below we describe how this belief update is computed.

After getting into s', PWM observes o € Q with the probability
O(o|s’,a). Let b be a probability distribution over the state space S.
b(s) denotes the probability that the object is in state s. Given b(s),
after taking action a and observing o, we obtain:

b'(s") =n0(ols’,a) Y T(s']s,a)b(s), (1)
SES
~1
where 1 = ( Y O(ols',a) ¥, T(s’|s,a)b(s)) is the normalizing
s'eS seS

constant.

A policy 7 specifies an action a = 7(b) for any belief b. Our
objective is to choose a policy that is able to maximize the expected
reward. The reward function over the belief state distribution can be

computed by:
r(b,a) =Y b(s)R(s,a) ®)
seS
Then the expected reward V7™ (by) for policy 7 starting from belief
by is defined as:

oo

VE(bo) = ) 7 r(b(t).a(t)) ©)

t=0



The optimal policy 7*, which provides actionable information, can
be obtained by optimizing the long-term reward:

T = arg max V™ (by) 4)

PWM is able to estimate real object states from noisy sensory data
and provide actionable information to actively instruct users to phys-
ically perform a maintenance task. PWM can also plan ahead with
action sequences that are optimal in the long term, while maintaining
flexibility to deal with changes in an uncertain environment.

As the major contribution of this paper, in the next two sections,
we will present and discuss the implementation and validation of
PWM in real-world daily-life and industrial applications.

3 APPLICATION 1: COPY MACHINE MAINTENANCE

In this daily-life application, our objective is to create a PWM for
an AR-based automated system that can guide users to inspect and
find out which part of a copy machine has a jam. The copy machine
we used in our experiment is illustrated in Figure 1. There are two
places that may cause jam: top and side places. (1) Top: There are
two doors in the top place and the object state depends on the status
of the doors. A typical inspection procedure suggested by the user
manual for the top place is: all doors closed — open door 1 — check
jam at door 1 — open door 2 — check jam at door 2. (2) Side: There
are four doors in the side place. A typical inspection procedure for
the side is: all doors closed — door 1 open — door 2 open — check
jam at door 2 — door 3 open — door 4 open — check jam at door 4.

inspect (and
clean) top

inspect (and

top jam?
B clean) side

next jam
awareness cycle

Figure 1: LEFT: One of the four copy machines used in the experiment.
Two places may have a jam: top and side, which are marked by blue
rectangles, respectively. RIGHT: Maintenance procedure of the copy
machine, provided by the product manual.

When a jam happens, a user needs to inspect both places: top and
side places. We assume the jam can only appear in one place, which
is reasonable since one paper cannot be jammed in two separate
places. Once the jam is identified and cleared in one place, the
inspection procedure ends, which means we do not have to examine
the remaining places any longer. The overall maintenance proce-
dures of the copy machine are shown in Figure 1 (RIGHT). Each
place inspection is formulated as an individual PWM.

3.1 PWM-based System Modeling

In this jam inspection application, the PWM can be used to model
the procedures of inspecting the top or side place. Since inspecting
both places has a similar procedure, here we only use the top place
as an example to describe our implementation details. Specifically,
the implementation is as follows:

Action Space A: A= {open door i,close door i,inspect (and clean)},
where i = {1,2}, includes all valid actions in top jam inspection.

State Space S: In the top jam inspection task, the copier has three
physical statuses: all doors closed, door 1 open, door 1 & 2 open.

Algorithm 1: State Transition Learning

Input : Training data, state space S
Output: State transition 7'

1: Initialize: State transition map S7M, whose keys are states in
the state space S, demonstration sequence index
iqg=1,ig € {1,2,--- ,nyg}, state index in each demonstration
sequence ids = lvids € {1723 e 7nd5};
. /* Establish the state transition map STM x*/
- while i; <ng do
igs = 1;
while 1 < iy, <ny, do
Append the value of key s(iyg — 1) with
(a(ids - 1)7s(ids));
iggt+;
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8 end

9: id++',

10: end

11: /x Calculate the state transition 7" %/
12: for key s in STM do

. #of (a,5') in STM]s]
| Tas) = S n STMs]

=~

14: end
15: return state transition 7.

So we need two bits to encode these statuses: [0,0]T represents the
status all doors closed, [1,0]" denotes the status door 1 open, [1,1]"

denotes the status door 2 open. Since the copier’s door 2 is designed

to be open only after door 1 is already open, the status [0, l]T is not
possible.

Since a jam may happen in either of the two doors, we need to
inspect each of them. In order to encode whether each door has
been inspected, we introduce two additional bits to represent the
inspection status: ‘0’ means the jam has not been inspected, and ‘1’
denotes it has been inspected.

After removing impossible statuses (constrained by the copier’s
hardware), the final state representation in PWM for top jam inspec-
tion is listed in Table 1, which contains seven states S = {sg, ..., 56},
corresponding to different door and inspection statuses.

State Transition T: Given the demonstrations provided by domain
experts, which are processed using our vision-based state recogni-
tion system [3], they are converted to training data with a format
described in Figure 2. Then, the state transition is learned by Algo-
rithm 1 using the training data. An illustration of the learned state
transitions and their probabilities is shown in Figure 3.

Frame Figure name Status (ground truth)  Prob(ol) Prob(02) Prob(o3)

0 Img_1 0.png 1 0.3671291 0.2967421 0.3361280
1 Img_1_lpng 1 0.3637380 0.2974490 0.3388130
2 Img_12.png 1 0.3952390 0.2976010 0.3071600

Figure 2: Format of training data from our previous vision-based state
recognition system [3].

Observation Space Q: The observation space Q = {all doors closed,
door I open, all doors open}, which are the physically possible door
statuses that can be distinguished by our previous vision-based state
recognition system [3]. Examples of each door status are provided
in Figure 4.



Table 1: The state space used in the subtask of top jam inspection

Notation: In “Inspection Status”, ‘00’ represents neither door 1 nor door 2 are inspected, ‘10’ represents only door 1 is inspected, and ‘11’
represents both door 1 and door 2 are inspected.

| | 50 | s | 52 | 53 | 54 | 55 | S6 |
[0 T M1 M1 M1 M1 M1 [0 T
. 0 0 0 1 1 0 0
State Representation 0 0 1 1 1 1 1
L 0 | L 0 | L 0 | L 0 | L 1] L 1] L 1]
Door Status all doors closed | door 1 open door 1 open door 2 open door 2 open | door 1 open |all doors closed
Inspection Status not inspected | not inspected | door 1 inspected | door 1 inspected | both inspected | both inspected | both inspected

open
door 2
jam inspection
(and clean)
output: jam? 1: 0

jam inspection
(and clean) A
output: jam? 1

o]

Figure 3: State transition for top jam inspection. Each node in the
model represents a state in PWM. In state [a,b,¢,d]", [a,b] T indicates
the status of two doors in the copy machine’s top place, ‘1 represents
open while ‘0 denotes close; [c,d]" indicates the inspection status.
‘00 means neither of the two doors are inspected, ‘10’ represents only
door 1 is inspected, and ‘11’ denotes both two doors are inspected.
Red strings are actions in each state. Black numbers are the state
transition probability after taking an action in each state. White num-
bers within red squares are rewards with respect to each state-action
pair. This figure is best viewed in color.

Observation Matrix O: The observation matrix indicates the proba-
bility that the vision system observes o; when the copier is in state
s;, that is, O(i, j) = Pr{oj|s;}. O(i, j) is calculated by the equation
0(i,j)= % Y7 Pr{ojls;}, where n is the number of instances that
the vision system observes o; when the copier machine is in state s;.

Reward R: The reward assignment mechanism in both top and side
place inspection are the same. The reward for opening doors before
inspection and closing doors after inspection is —1, which matches
our intention. However, we penalize inappropriate actions at each
state with the reward —35, that is, the reward for opening doors after
inspection as well as closing doors before inspection is —5. The
reward for inspection is — 1. The detailed reward assignment in the
top inspection scenario can be found within the red boxes in Figure
3. It should be pointed out that the reward of state-action pairs that
are not in the transition diagram is —10, forcing the large penalty
for invalid actions. The reward discount constant ¥ is set to 0.5.

3.2 Experimental Results

During the learning phase using training data, T is learned to be
T(s,a,s') =5.6%,T (s.a,s) = 94.4%,s,s' € S and s # s, and the
observation matrix O of the top inspection is learned to be:

0.4100 0.2800 0.2900
0.2900 0.4000 0.3200 )
0.3000 0.3200 0.3900

After the learning process to build the PWM, we are able to deploy
it to guide users on the jam inspection task. A real-world test result
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Figure 4: Exemplary training images of different door statuses for the
copier top jamming case. Each row represents one door statuses,
and from top to bottom they are: (a) all doors are closed; (b) door 1 is
open; (c) all doors are open.

can be found in Appendix I, where the output text are the actionable
instructions provided to the users, helping them to inspect jams of
the copier correctly and smoothly.

The quantitative performance comparison of our PWM with base-
line methods for jam inspection guide is illustrated in Figure 5. It
is observed that the method based on direct observations from the
vision system (i.e., without modeling the states) is not stable and
accurate enough, and there are a few wrong identification of the
statuses. However, PWM is able to filter out noise and obtain much
stable belief estimation. If the underlying POMDP paradigm is not
utilized in a workload model, the system typically cannot provide
actionable instructions. Also, if a Markovian assumption is not as-
sumed, the instructions provided to users may change frequently,
which could confuse the users and decrease the user satisfaction to
automated maintenance guide systems.

3 T T T
* ground truth
25 | |==0bservation J
=—Dbelief

status of the top place

30 40 50 60
Frame

Figure 5: Performance comparison of PWM with baseline methods for
top jam inspection. There are three physical status of the top place:
status = all doors closed, status, = door 1 open, statuss = door 2 open.
statusy means the current status is invalid.



4 APPLICATION 2: COMPRESSOR INSPECTION

The second real-world application is inspired by the industrial need
to inspect a compressor in the underground. In this experiment, the
used compressor is located in the Edgar mine owned and managed by
Colorado School of Mines. Figure 6 illustrates the appearance of the
compressor. There exist multiple steps throughout the compressor
inspection. Several steps are sequential, meaning these steps must
be finished in a strict order, while other steps are non-sequential and
their order is not important.

4.1 User-Centric Model Construction

In the jam inspection guide problem, we (the model designer) manu-
ally defined our workflow models, including states, actions, observa-
tions, and rewards. However, due to the limited domain knowledge
of model designers who are typically computer scientists, we typi-
cally cannot create a comprehensive model that captures all domain
considerations. Or it could be too time-consuming and unaffordable
to discuss all detailed issues with domain experts.

In order to make our PWM applicable and scalable to a variety of
tasks in different domains, we propose to directly learn our model au-
tonomously using the expert demonstrations only. Our user-centric
model construction approach does not depend on specific knowledge
of model designers, and the learned PWM is determined completely
by the input training data. In this case, we still follow the POMDP
paradigm described in Section 2 as the foundation to build our user-
centric PWM, due to its capability in sequential decision making
under uncertainty. The difference is that the parameters of PWM and
POMDP are now completely determined by expert demonstrations
only instead of depending on the model designer’s knowledge, i.e.,
we (model designers) do not assume to have any prior knowledge of
the target system to be inspected or repaired.

In our user-centric model building approach, the state space is
determined by the domain experts who have prior knowledge of the
target system to be inspected or repaired. The experts provide the
state information through a log file. Then, our model reads in this
file and establishes the states autonomously. The user-centric PWM
determines the action space in the same fashion, without requiring
the model designer to have any task-specific knowledge.

The observation space is built through learning from a training
data file, which is generated by the vision system [3] according to
the expert demonstration videos, with a similar format to the one in
Figure 2. After obtaining the observation space, we need to learn the
observation matrix O, which represents the probability of observing
o; when the object is in state 5;. The learning process is similar to
that in the previous jam inspection task. The main difference is that
the observation space also needs to be learned in this case, which is
calculated by:

1 n
0(i,j) = — Y Pr{ojlsi}, (6)

Figure 6: The compressor in the Edgar underground mine is used in
this experiment.
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Figure 7: Examples of observations in different states for compressor
startup guidance. Each row represents one state; from top to bottom
they are: (a) panel 1; (b) panel 2; (c) upper oil reservoir; (d) lower oil
reservoir; (e) frame oil buttons; (f) front panel; (g) back lever.

where N is the number of instances that the vision system observes
o; when the target object is in state s;. The examples of observations
in seven states in the compressor inspection application are shown
in Figure 7. Using the same training data, the state transition can
also be learned using Algorithm 1.

4.2 Experimental Results

In the experiments, we assume that multiple domain experts provide
demonstrations of finishing the compressor inspection task as the
training data. Since each of the experts may have their own inspec-
tion preference, the sequence of actions provided by the experts
could be different, as shown in Table 2 in which four experts provide
three different sequences of completing the task. The sequential
variations in the demonstrations can greatly increase the learning
difficulty, which however is common in real-world applications.

Our user-centric PWM can well address this issue, which learns
the following state transition:

0.875 0.063 0.031 0.031 0 0 0
0 0.909 0.068 0.023 0 0 0
0 0.018 0.929 0.036 0.018 0 0
0 0.019 0 0.923  0.058 0 0
0 0 0 0 0.917 0.083 0
0 0 0 0 0 0.958 0.042
0 0 0 0 0 0 1.000

The observation matrix in the compressor inspection application
is learned as follows:

029 0.11 0.10 0.10 0.10 0.10 0.10 0.10
0.10 0.28 0.12 0.10 0.10 0.10 0.10 0.10
0.10 0.10 0.28 0.13 0.10 0.10 0.10 0.10
0.10 0.10 0.10 0.28 0.12 0.10 0.10 0.10
0.10 0.10 0.10 0.10 0.28 0.12 0.10 0.10
0.10 0.10 0.10 0.10 0.10 0.28 0.12 0.10
0.10 0.10 0.10 0.10 0.10 0.12 0.28 0.10

The number of observations is also seven (as they are defined as the
estimation of the seven states in our experiment). The dimension of
the observation matrix O is 8 x 8 is because we intentionally add an



additional observation called “‘unseen observation”, which is used
to indicate the intermediate status during state transition, which are
undefined and considered as an “unseen observation”.

Table 2: Different inspection sequences provided by four experts.

| Expert | Tnspection sequence, each number denotes a state |

1 12232345556 —7
2 13222345556 —7
3 1422233 -5-6—7
4 12232345556 —7

After learning all the parameters in our user-centric PWM, the
model can be used to guide users to perform compressor inspection.
A test case is demonstrated in Appendix I, where the model out-
puts provide actionable instructions to the users. Comparison of
quantitative performance of our model with baseline methods is also
illustrated in Figure 8.

7 T T T T T T

* ground truth
6 I |===observation
= Dbelief

1
0 20 40 60 80 100 120 140 160 180

Frame

Figure 8: Performance comparison in the application of compressor
inspection. There exist seven valid states, and srare 0 indicates that
the current state is invalid.

In this user-centric setup with multiple domain experts providing
demonstrations, the conflicts of demonstrations from different users
in the training data can be well addressed by our user-centric PWM
through increasing the connectivity among the states. In addition,
this data-driven, learning-based model construction approach allows
domain experts to use our model without knowing technical details
about our approach. As long as the experts provide the prior knowl-
edge of a specific task, and our user-centric PWM can transform the
knowledge into the model autonomously.

5 CONCLUSION AND FUTURE WORK

This paper describes the implementation and validation results of a
planning-based workflow modeling approach based on the Markov
decision process. Different from approaches based on HMMs and
DBNs, the PWM is able to provide actionable information as direct
instructions of next actions to take. We validate our approach in the
daily-life copier inspection application, as well as in the industrial
application to inspect underground compressors where we develop a
user-centric model that separates model design and domain expertise.
Both validation scenarios have shown the effectiveness of planning-
based workflow modeling.

In our current prototype, the state definition is completely de-
termined by humans (either model designers or domain experts),
which could contain significant ambiguity. As a future work, we will
develop data-drive state learning methods to automatically identify
and adapt states. In addition, we will integrate this PWM with our

previous vision system [3] onto a physical hardware (e.g., a DAQRI
helmet) and validate its overall effectiveness in realtime scenarios.
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APPENDIX |: AUTOMATED MAINTENANCE GUIDE FOR COPI-
ER’S TOP JAM INSPECTION

Please open door 1

Please open door 1

Please open door 1

Please open door 1

Please open door 1

Please open door 1

Please open door 1

Please open door 1

Please open door 1

Invalid perception result, re-perceiving now
Please open door 1

Please open door 1

Please open door 1

Please open door 1

Please open door 1

Please open door 1

Please open door 1

Invalid perception result, re-perceiving now
Please open door 1

Please open door 1

Please open door 1

Invalid perception result, re-perceiving now
Invalid perception result, re-perceiving now
Please inspect the jam at door 1 here

Is there jam here? Answer ’1’ for ’yes’, 0’ for 'no’:
(user interaction): O

Invalid perception result, re-perceiving now
Please open door 2

Please open door 2

Please open door 2

Invalid perception result, re-perceiving now
Please open door 2

Please open door 2



Please open door 2
Please open door 2
Please open door 2
Please open door 2
Please open door 2
Please open door 2
Please open door 2
Please open door 2
Please open door 2
Please open door 2
Please inspect the jam at door 2 here

Is there jam here? Answer ’1’ for ’yes’, 0’ for 'no’:

(user interaction): 1
Please close door 2
Please close door 2
Please close door 2
Please close door 2
Please close door 2
Please close door 2
Please close door 2
Please close door 2
Please close door 2
Please close door 2
Please close door 1
Please close door 1
Please close door 1
Please close door 1
Please close door 1
Please close door 1
Please close door 1
Please close door 1

APPENDIX II: AUTOMATED MAINTENANCE GUIDE FOR COM-

PRESSOR INSPECTION

Please turn on the switch if it is off

Action finished ? Answer ’1’ for ’yes’, 0’ for 'no’:

(user interaction): 1
Please move to PP2

Please move to PP2

Please move to PP2

Please move to PP2

Please move to PP2

Please move to PP2

Please move to PP2

Please move to PP2

Please turn on the switch if it is off

Action finished ? Answer ’1’ for "yes’, 0’ for 'no’:

(user interaction): 1

Please move to The upper oil reservoir
Please move to The upper oil reservoir
Please move to The upper oil reservoir
Please move to The upper oil reservoir
Please move to The upper oil reservoir
Please move to The upper oil reservoir
Please move to The upper oil reservoir
Please move to The upper oil reservoir
Please move to The upper oil reservoir
Please move to The upper oil reservoir
Please move to The upper oil reservoir
Please move to The upper oil reservoir
Please check oil level

Action finished ? Answer ’1’ for "yes’, 0’ for 'no’:

(user interaction): 1

Please move to The lower oil reservoir
Please move to The lower oil reservoir
Please move to The lower oil reservoir

Please move to The lower oil reservoir
Please move to The lower oil reservoir
Please move to The lower oil reservoir
Please move to The lower oil reservoir
Please move to The lower oil reservoir
Please move to The lower oil reservoir
Please move to The lower oil reservoir
Please move to The lower oil reservoir
Please move to The lower oil reservoir
Please move to The lower oil reservoir
Please move to The lower oil reservoir
Please move to The lower oil reservoir
Please check oil level

Action finished ? Answer *1” for "yes’, ’0’ for 'no’:

(user interaction): 1

Please move to The frame oil system
Please move to The frame oil system
Please move to The frame oil system
Please move to The frame oil system
Please move to The frame oil system
Please move to The frame oil system
Please move to The frame oil system
Please move to The frame oil system
Please move to The frame oil system
Please move to The frame oil system
Please move to The frame oil system
Please move to The frame oil system
Plese press two buttons

Action finished ? Answer *1” for "yes’, 0’ for 'no’:

(user interaction): 1

Please move to The front of compressor
Please move to The front of compressor
Please move to The front of compressor
Please move to The front of compressor
Please move to The front of compressor
Please move to The front of compressor
Please move to The front of compressor
Please move to The front of compressor
Please move to The front of compressor
Please move to The front of compressor
Please move to The front of compressor

Please hit green Start button, then wait 2 minutes, and hit constant

speed control button afterwards

Action finished ? Answer *1” for "yes’, *0’ for 'no’:

(user interaction): 1

Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor
Please move to The back of compressor

Please switch the lever position, and log in the start/stop book
Action finished ? Answer *1’ for "yes’, "0’ for 'no’:

(user interaction): 1
Compressor Check Finished!



