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Abstract	

We	propose	a	new	method	that	uses	an	iterative	closest	point	(ICP)	algorithm	to	fit	three‐
dimensional	points	to	a	prior	geometric	model	for	the	purpose	of	determining	the	position	
and	orientation	(pose)	of	a	sensor	with	respect	to	a	model.	We	use	a	method	similar	to	the	
Random	 Sample	 and	 Consensus	 (RANSAC)	 algorithm.	 However,	 where	 RANSAC	 uses	
random	samples	of	points	in	the	fitting	trials,	DIRSAC	DIRects	the	sampling	by	ordering	
the	points	according	to	their	contribution	to	the	solution	constraints.	This	is	particularly	
important	 when	 the	 data	 is	 quasi‐degenerate;	 meaning	 that	 some	 of	 the	 degrees	 of	
freedom	of	the	pose	are	under	constrained.	In	this	case,	the	standard	RANSAC	algorithm	
often	 fails	 to	 find	 the	 correct	 solution.	Our	approach	uses	mutual	 information	 to	 avoid	
redundant	points	that	result	in	degenerate	sample	sets.	We	demonstrate	our	approach	on	
real	 data	 and	 show	 that	 in	 the	 case	 of	 quasi‐degenerate	 data,	 the	 proposed	 algorithm	
outperforms	RANSAC.	
Keywords:	 RANSAC,	 ICP,	 quasi‐degenerate,	mutual	 information,	 3D	model	 fitting,	 point	
cloud	

1 Introduction	
A	 challenge	 for	 real	world	 robotics	 applications	 is	 the	 estimation	 of	 the	 location	 and	 orientation	
(pose)	 of	 the	 robot	 in	 a	 local	 environment.	 For	 any	 robotic	 system	 to	perform	meaningful	 tasks,	
accurate	 localization	 information	 is	 crucial.	 In	 this	 paper,	 we	 focus	 on	 applications	 that	 require	
localization	with	 respect	 to	 a	 known	 a	 priori	 surface	model.	We	 do	 not	 address	 the	 problem	 of	
continual	pose	 tracking;	 rather,	we	 focus	on	determining	 accurate	 localization	given	 some	 rough	
initial	pose	estimate.	

Recent	availability	of	relatively	low	cost	range	sensors	have	led	to	many	approaches	that	use	range	
information	to	estimate	pose.	One	common	approach	fits	the	sensed	three‐dimensional	(3D)	points	
to	a	prior	model	using	an	Iterative	Closest	Point	(ICP)	algorithm	[1].	This	approach	can	suffer	when	
the	data	is	contaminated	by	outliers.	Traditional	statistical	approaches	have	been	used	to	improve	
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robustness	to	this	noisy	data.	For	example,	a	RANdom	Sampling	And	Consensus	(RANSAC)	approach	
has	been	demonstrated	to	provide	good	results	 in	noisy	environments.	RANSAC	has	been	used	in	
many	contexts,	and	was	first	introduced	in	[2].	

It	is	common	for	the	available	data	to	be	in	a	degenerate,	or	quasi‐degenerate	state.	By	degenerate,	
we	 mean	 that	 some	 of	 the	 solution	 dimensions	 are	 not	 constrained	 by	 the	 data.	 By	 “quasi‐
degenerate”,	 we	 mean	 the	 case	 where	 the	 constraining	 data	 is	 indeed	 present,	 but	 is	 a	 small	
percentage	of	the	available	data,	such	that	it	would	likely	be	omitted	or	considered	outlier	data	if	a	
random	subset	were	chosen	to	compute	a	fit.	

Consider	the	pathological	case	of	an	infinite	plane.	The	constraints	are	along	the	direction	orthogonal	
to	the	surface,	and	the	orientation	about	the	axes	contained	within	the	planar	surface,	shown	in	red	
in	the	left	of	Figure	1.	The	unconstrained	dimensions	are	the	rotation	about	the	surface	normal	and	
the	position	along	the	dimensions	parallel	to	the	plane.	

Consider	the	addition	of	small	non‐planar	 features	as	shown	in	the	right	of	Figure	1.	 If	points	are	
sampled	from	these	features,	they	would	completely	constrain	the	pose.	The	current	naïve	RANSAC	
algorithm	is	overwhelmed	by	the	preponderance	of	planar	data	and	would	likely	not	consider	the	
small	but	critical	constraints	afforded	by	the	non‐planar	points.	Thus,	the	algorithm	may	never	select	
a	 sample	set	 that	 includes	 the	critical	nonplanar	points	 (or,	may	 take	a	 long	 time	 to	 find	 it).	The	
resulting	solution	could	be	completely	erroneous	even	though	it	may	have	low	residual	error.	

The	problem	is	that	the	naïve	RANSAC	algorithm	is	very	likely	to	pick	sample	sets	that	are	degenerate.	
Some	of	the	points	in	such	sets	are	redundant,	in	the	sense	that	they	do	not	add	any	new	information	
in	 terms	 of	 constraining	 the	 solution.	While	 there	 are	methods	 to	 detect	 the	 degeneracy	 of	 such	
sample	sets	(as	described	in	Section	2),	it	would	be	better	to	avoid	selecting	redundant	points	in	the	
first	place.	If	redundant	points	could	be	avoided,	then	there	is	less	risk	of	the	algorithm	finding	an	
erroneous	solution.	

As	a	 side	note,	 the	example	shown	 in	Figure	1	 is	 still	not	 fully	 constrained	due	 to	a	 symmetry	of	
rotation	 of	 180	 degrees	 around	 the	 axis	 orthogonal	 to	 the	 plane.	We	make	 the	 distinction	 here	
between	 a	 discrete	 and	 continuous	 degeneracy.	 A	 discrete	 degeneracy	 results	 from	 multiple	
solutions	 that	 are	 separated	 by	 large	 discrete	 steps	 in	 the	 solution	 space,	whereas	 a	 continuous	
degeneracy	results	from	equally	good	solutions	along	continuous	motion	in	the	solution	space.	This	
work	focusses	on	the	continuous	degeneracies	and	therefore	is	not	concerned	with	degeneracies	due	
to	symmetries.		

	

Figure	1:	Illustration	of	a	3D	laser	scan	of	a	planar	surface.	The	left	shows	a	fully	degenerate	case.	The	
three	dimensions	in	red	are	constrained,	while	the	dimensions	in	black	are	completely	unconstrained.	In	
the	right	case,	all	six	dimensions	are	fully	constrained,	but	only	by	a	very	small	percentage	of	the	data.	We	

refer	to	this	as	a	“quasi‐degenerate”	case.	
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This	paper	proposes	an	algorithm	that	selects	points	in	such	a	way	as	to	avoid	degenerate	sample	
sets.	Instead	of	a	purely	random	point	selection,	we	direct	the	selection	of	points	to	avoid	information	
redundancy.	The	algorithm,	called	DIRSAC,	DIRects	point	selection	within	a	SAmple	and	Consensus	
framework.	The	main	idea	is	that	we	evaluate	each	point	based	on	its	ability	to	constrain	the	pose	of	
the	solution.	We	identify	redundant	points	by	computing	the	mutual	 information	between	points.	
Experimental	 results	 show	 significant	 improvements	 over	 the	 naïve	 RANSAC	 algorithm.	 A	
preliminary	version	of	this	work	was	published	in	[3].	

The	remainder	of	this	paper	is	organized	as	follows.	Section	2	discusses	the	current	state	of	the	art	
related	 to	 localization	and	 fitting	of	point	 clouds	 to	prior	models.	 Section	3	describes	 the	overall	
approach	and	Section	4	provides	a	simple	example.	Section	5	gives	the	details	of	the	full	approach	to	
solve	the	localization	problem	in	noisy,	quasi‐degenerate	data.	In	Section	6,	we	describe	the	system	
configuration	used	 to	generate	experimental	data	and	describe	 the	models	used	 for	our	analysis.	
Results	are	provided	in	Section	7,	and	Section	8	provides	additional	discussion.	

2 Previous	Work	
One	 approach	 for	 registering	 3D	 sensed	 point	 data	 to	 surface	 model	 data	 is	 to	 find	 a	 rigid	
transformation	between	a	small	number	of	local	data	points	and	corresponding	points	on	the	surface	
model.	Chen,	et	al	randomly	pick	a	data	point	and	hypothesize	a	corresponding	point	on	the	model	
[4].	Then	they	pick	a	small	number	of	nearby	data	points	and	find	model	points	that	are	in	the	same	
relative	 positions	 as	 the	 data	 points.	 After	 these	 control	 points	 are	 successfully	matched,	 a	 rigid	
transformation	is	computed	and	used	to	transform	all	remaining	points.	The	solution	that	aligns	the	
largest	number	of	points	is	taken	to	be	the	correct	solution.	In	the	case	of	quasi‐degenerate	data,	this	
algorithm	would	 have	 a	 similar	 problem	 to	 RANSAC,	 in	 that	 many	 of	 subsample	 sets	 would	 be	
degenerate.		

Another	approach	is	to	compute	a	feature	vector	for	local	neighborhoods,	and	then	match	feature	
vectors.	Features	such	as	“spin	 image”	descriptors	 [5]	and	 local	curvature	models	(e.g.,		[6])	have	
been	used.	Finding	correspondences	is	more	difficult	 if	there	are	outliers	 in	the	data.	Outliers	are	
sensed	points	with	large	range	errors,	which	can	be	caused	by	a	variety	of	sensor	effects	and	un‐
modeled	objects.	If	the	proportion	of	outliers	is	small,	then	robust	estimation	techniques	can	still	find	
the	correct	fit	of	the	data	to	the	model.	If	the	proportion	of	outliers	is	high,	then	another	method	must	
be	used.		

If	a	good	initial	guess	of	the	pose	is	available,	then	other	methods	can	be	used.	Civera,	et	al	develop	a	
Kalman‐filter	based	algorithm	that	uses	prior	probabilistic	information	on	the	state	of	the	sensor	to	
limit	the	size	of	the	random	sample	sets	[7].	In	fact,	using	only	a	single	random	sample	is	required	to	
instantiate	 the	 model.	 It	 is	 not	 clear	 how	 this	 algorithm	 would	 perform	 in	 the	 case	 of	 quasi‐
degenerate	data.	

Similar	to	[8],	our	approach	uses	the	classic	Iterative	Closest	Point	(ICP)	algorithm	within	a	Random	
Sample	and	Consensus	(RANSAC)	framework.	This	approach	automatically	finds	correspondences	
and	can	 tolerate	a	 large	 fraction	of	outliers.	The	RANSAC	algorithm	randomly	selects	a	minimum	
subset	of	points	to	compute	a	fit.	The	ICP	algorithm	then	computes	the	point	correspondences	to	the	
model,	and	 the	pose	of	 the	model	 in	 the	reference	 frame	of	 the	sensor.	Once	computed,	 the	pose	
information	is	used	to	transform	the	remaining	points	to	the	reference	frame	of	the	sensor,	and	the	
residual	error	between	the	transformed	points	and	the	measured	points	is	measured.	In	addition	to	
the	residual	error,	a	set	of	inliers	is	identified	as	points	that	fall	within	some	error	threshold.	This	
process	repeats	until	a	reasonable	probability	exists	that	a	good	solution	has	been	computed.	The	list	
of	plausible	solutions	are	searched	in	order	of	increasing	error	until	a	solution	with	enough	inliers	
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has	been	found.	The	method	does	require	a	good	initial	guess	in	order	to	converge	similar	to	ICP.	If	a	
good	initial	guess	is	not	available,	there	are	several	techniques	(e.g.	feature	matching)	that	can	be	
used.	Many	applications	that	require	a	precise	localization	within	quasi‐degenerate	data	will	already	
employ	other	methods	for	gross	localization.	These	methods	are	not	the	focus	of	this	work	and	we	
assume	an	initial	good	guess	is	available.	

In	[8]	the	authors	evaluate	a	few	different	methods	of	computing	the	pose	of	a	robot	by	matching	
scans	 between	 different	 sensor	 views.	 They	 evaluate	 a	 set	 of	 filters	 to	 process	 the	 data	 prior	 to	
running	the	standard	ICP	algorithm,	including	RANSAC	and	SIFT,	and	their	combination.	Noting	that	
the	RANSAC	algorithm	improves	accuracy,	while	SIFT	is	faster,	they	demonstrate	that	a	combination	
of	 the	 two	will	 likely	produce	a	balanced	approach.	As	several	 ICP	algorithms	do,	 their	approach	
depends	on	matching	scans	point‐to‐point,	whereas	we	have	point‐to‐model	matching.	 	Although	
their	results	are	not	directly	applicable,	they	do	note	that	RANSAC	and	ICP	together	do	perform	better	
than	ICP	alone.	

Significant	effort	has	been	made	to	improve	the	runtime	speed	of	RANSAC	while	still	guaranteeing	a	
correct	solution	with	some	probability.	Reviews	of	approaches	to	improving	RANSAC	are	provided	
in	 	[9]	 and	 [10].	 Some	 approaches	 attempt	 to	 optimize	 the	model	 verification	 step.	 For	 example,	
Matas	and	Chum	[11]	have	designed	a	pre‐evaluation	stage	that	attempts	to	quickly	filter	out	bad	
hypotheses.	The	concept	of	early‐termination	was	also	extended	by	Capel	[12].		

Another	strategy	is	to	bias	the	point	selection	such	that	points	with	a	higher	inlier	probability	will	be	
treated	preferentially	 in	 the	 random	point	 selection	process.	 For	 example	 [13]	 orders	 the	points	
based	on	image	feature	matching	scores,	using	the	assumption	that	a	higher	similarity	in	the	feature	
match	will	increase	the	likelihood	of	the	point	match	being	an	inlier.	Once	the	points	are	sorted,	they	
perform	 RANSAC	 over	 a	 PROgressively	 larger	 subset	 from	 the	 top	 of	 this	 sorted	 set	 of	 points	
(PROSAC).	A	related	method	is	that	of		[14],	which	groups	points	based	on	optical	flow	or	using	the	
result	of	image	segmentation.	Of	course,	these	approaches	are	only	applicable	if	information	derived	
from	image	features	is	available.	In	our	application,	we	assume	no	information	is	available	other	than	
the	positions	of	the	3D	sensed	points	in	the	sensor’s	reference	frame,	and	a	rough	estimate	of	the	
sensor’s	pose	relative	to	the	surface	model.	

Approaches	 to	 help	 speed	 ICP	 to	 convergence	 when	 constraining	 data	 is	 sparse	 have	 also	 been	
proposed,	such	as		[15],	which	weights	points	according	to	their	additional	geometric	information.	
They	essentially	compute	an	interest	metric	for	each	point	based	on	the	variance	of	the	normals	of	
surrounding	 points,	 scaled	 by	 the	 distance.	 Using	 this	 as	 a	 weighting	 scheme	 for	 ICP,	 they	
demonstrate	 a	 better	 convergence	 rate	 and	 accuracy	 for	 situations	 where	 very	 little	 geometric	
structure	would	otherwise	constrain	 the	 ICP	 fit.	While	 they	are	not	using	 this	 in	 the	 context	of	a	
RANSAC	algorithm,	this	type	of	weighting	scheme	could	improve	convergence,	especially	in	a	quasi‐
degenerate	environment.	

Notably,	our	method	of	determining	 the	 redundant	 information	of	points	 could	also	be	used	 in	 a	
similar	way	to	weight	ICP.	The	main	difference	in	our	method	and	their	method	being	that	we	are	
selecting	a	subset	of	points	which	guarantee	fully	constrained	fits	if	such	constraints	are	available	in	
the	data.	Their	method	simply	prefers	points	with	a	high	interest	metric,	but	makes	no	claims	on	the	
actual	ability	of	those	points	to	constrain	the	ICP	solution.	

Despite	the	efforts	mentioned	above	to	speed	up	processing,	RANSAC	can	still	be	slow,	especially	
when	the	fraction	of	inliers	is	low.	If	 	is	the	fraction	of	inliers,	then	the	number	of	iterations	 	to	find	
a	good	solution	(i.e.	a	sample	set	with	no	outliers)	with	probability	 	must	be	at	least	
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where	 	is	the	size	of	each	sample	[16].	

In	the	case	of	quasi‐degenerate	data,	a	sample	set	must	be	found	that	not	only	contains	all	inliers,	but	
also	is	not	degenerate.	For	this,	the	required	number	of	RANSAC	iterations	can	be	much	larger	as	
Frahm	et	al.	described	in	[17].	Figure	2	illustrates	a	comparison.	The	left	plot	shows	the	number	of	
required	iterations	to	produce	a	good	solution	with	99.5%	probability,	for	various	sample	set	sizes.	
However,	when	the	data	is	quasi‐degenerate,	the	figure	on	the	right	shows	how	the	curves	for	 6	
points	change	for	varying	levels	of	degeneracies.	

Frahm’s	approach	to	mitigate	this	assumes	that	the	model	estimation	problem	can	be	expressed	as	a	
linear	relationship	 0,	where	 	is	the	vector	of	parameters	to	be	fit,	and	 	is	a	matrix	containing	
the	data	from	a	sample	set	of	matches.	They	describe	an	algorithm	which	can	detect	degeneracy	in	
,	 and	 are	 able	 to	 estimate	 the	 actual	 number	 of	 degrees	 of	 freedom	 in	 the	data.	However,	 they	

evaluate	the	sample	set	after	the	points	have	been	selected	to	determine	if	the	selected	points	are	in	
a	degenerate	configuration.	This	approach	requires	searching	through	the	model	constraint	space	in	
a	non‐trivial	way	which	is	costly.	We	would	like	to	avoid	degenerate	configurations	altogether	by	
choosing	points	in	such	a	way	that	they	will	provide	us	with	non‐degenerate	solutions.	Furthermore,	
the	assumption	of	a	linear	data	fitting	relationship	is	not	applicable	to	our	problem	of	finding	a	rigid	
body	transformation	using	ICP.	

Although	not	specifically	developed	 for	RANSAC,	 in	 [18],	Davison	develops	an	algorithm	to	select	
points	based	on	a	mutual	information	constraint.	He	then	uses	this	to	determine	which	point,	in	a	
feature	tracking	context,	would	provide	the	most	information	to	the	state	if	used	as	an	observation.	
As	described	in	the	next	section,	our	approach	extends	this	work	and	applies	it	to	the	current	context	
of	matching	3D	data	with	a	prior	model.	Using	this,	we	are	able	to	sort	the	3D	points	by	their	added	
information	and	direct	our	sampling.	

3 Overall	Approach	
The	 typical	 naïve	 RANSAC	 algorithm	 is	 unlikely	 to	 find	 a	 correct	 solution	 within	 the	 expected	
iterations	given	by	Equation	1	in	the	presence	of	quasi‐degenerate	data.	Quasi‐degenerate	data	is	

Number	of	Iterations	Required	for	Good	Solution	(P	=	99.5%)	 	
Number	of	Iterations	Required	for	Good	RANSAC	Solution	

with	Degenerate	Inliers	(P	=	99.5%,	n	=	6)	

	

Figure	2:	Comparison	of	the	naïve	version	of	RANSAC	(left)	which	assumes	any	point	subset	will	be	a	
constraining	subset,	and	(right)	consideration	for	many	subsets	actually	being	degenerate	subsets.	
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problematic	when	computing	a	RANSAC	solution	because	the	random	selection	process	will	result	in	
many	erroneous	solutions	computed	with	a	completely	degenerate	set	of	data.	In	order	to	maintain	
the	random	nature	of	RANSAC,	while	avoiding	solutions	computed	from	redundant	data,	we	need	to	
direct	 the	point	sampling	by	avoiding	groups	of	points	 that	do	not	adequately	constrain	the	pose	
solution.	

We	direct	the	point	selection	process	in	DIRSAC	by	computing	the	mutual	information	between	sets	
of	points	which	provides	us	with	the	information	content	overlap	between	the	two	point	sets.	We	
direct	 the	point	selection	 in	DIRSAC	as	 follows.	First	we	randomly	select	a	point	and	compute	 its	
mutual	information	with	each	of	the	remaining	points.	We	label	points	with	a	mutual	information	
greater	than	a	threshold	as	redundant.	In	our	experiments,	we	empirically	found	the	mean	of	all	the	
mutual	information	scores	to	be	a	good	threshold.		The	algorithm	was	not	particularly	sensitive	to	
the	choice	of	threshold,	and	other	metrics	could	be	used	such	as	the	median.	Once	redundant	points	
have	been	identified,	we	remove	them	from	the	set	of	available	points	and	randomly	pick	from	the	
remaining	non‐redundant	points.	A	new	set	of	mutual	information	scores	is	calculated	between	the	
currently	 selected	 points	 and	 all	 remaining	 points.	 Redundant	 points	 are	 again	 identified	 and	
removed	for	the	next	random	selection.	This	process	continues	until	we	have	chosen	enough	points	
to	constrain	the	solution.	

As	 in	RANSAC,	 this	approach	 is	 robust	 to	outliers	 in	 the	data	because	of	 the	 random	selection	of	
points.	However,	unlike	the	simple	naïve	RANSAC	method,	our	approach	avoids	selecting	redundant	
data	and	promotes	individual	trial	fits	with	strong	constraints.	With	this	approach,	the	number	of	
iterations	needed	to	find	a	correct	solution	should	be	reduced.	

4 Simple	Example	
To	provide	an	intuitive	understanding	of	the	overall	approach,	consider	the	simple	example	shown	
in	Figure	3.	This	 figure	shows	a	one‐dimensional	“surface”	model,	which	 is	 just	a	curve	 in	the	 	
plane.	The	surface	 is	classified	as	quasi‐degenerate,	since	 it	consists	of	a	straight	 line	with	only	a	
small	“bump”	to	constrain	the	pose.	The	surface	is	composed	of	a	set	of	facets,	and	the	normal	vector	
at	each	facet	is	shown.	

A	sensor	is	positioned	above	the	model.	The	pose	of	the	sensor	is	uncertain,	and	is	represented	by	a	
covariance	matrix.	The	 translational	uncertainty	of	 the	sensor	pose	 is	depicted	as	an	ellipse.	The	
rotational	uncertainty	of	 the	sensor	pose	 is	depicted	as	a	“cone”	about	the	coordinate	axes	of	 the	
sensor.	The	sensor	samples	points	from	the	surface,	shown	as	the	red	dots.		
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Due	to	the	initial	error	in	the	sensor’s	pose,	the	estimated	locations	of	the	sampled	points	do	not	align	
with	the	corresponding	model	points.	However,	alignment	can	be	done	by	choosing	a	random	subset	
of	points	and	then	performing	the	ICP	algorithm	to	align	the	subset	of	points	to	the	model	(and	thus	
determine	the	true	sensor	pose).	The	reason	that	a	random	subset	 is	used,	rather	than	the	entire	
point	set,	is	because	there	may	be	outliers	in	the	sensed	points,	which	can	corrupt	the	result	(in	the	
simple	example	shown,	there	are	no	outliers).	

However,	 the	 choice	 of	 the	 subset	 of	 points	 greatly	 influences	 the	 ability	 of	 the	 ICP	 algorithm	 to	
converge	to	the	correct	pose.	Consider	the	naïve	sampling	of	the	three	points	shown	in	Figure	4	(top).	
These	three	points	are	all	chosen	from	the	flat	part	of	the	surface.	The	closest	corresponding	points	
on	the	model	are	shown.	

After	 one	 iteration,	 the	 ICP	 algorithm	aligns	 the	 three	points	 to	 the	model,	 as	 shown	 in	Figure	 4	
(bottom),	and	terminates.	However,	 the	alignment	 is	obviously	not	correct,	as	can	be	seen	by	the	
positions	of	the	other	points.	The	reason	is	that	the	three	points	do	not	sufficiently	constrain	the	pose	
of	the	sensor.	

	
Now,	consider	an	alternative	approach	that	uses	mutual	information	to	select	the	points.	The	first	
point	is	still	chosen	at	random,	and	is	marked	“1st”	in	Figure	5.	Then	the	mutual	information	between	
this	point	and	all	other	points	is	computed,	using	Equation	2,	which	is	described	below	in	Section	5	.	

	
Figure	3:	A	simple	one‐dimensional	surface,	consisting	of	a	set	of	facets.	The	surface	normal	vectors	at	each	facet	

are	shown.	A	sensor	samples	points	from	the	surface,	shown	as	the	red	dots.	

	

	
Figure	4:	Performance	of	the	ICP	algorithm	with	a	naïve	sampling	of	points.	(Top)	Initial	point	positions,	with	closest	

corresponding	points	shown.	(Bottom)	Final	convergence	of	ICP	algorithm	after	2	iterations.	
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We	will	 avoid	 selecting	 additional	 points	 that	 have	 a	 large	 value	 of	mutual	 information	with	 the	
previously	 selected	point,	 since	 these	points	provide	very	 little	new	 information	 to	constrain	 the	
pose.	As	can	be	seen,	points	that	are	near	to	the	first	point	have	a	large	value	of	MI.	The	point	with	
the	minimum	mutual	information	is	on	the	“bump”	and	is	marked	with	an	arrow	in	the	figure.	

	
As	 described	 in	 Section	 5,	 our	 algorithm	 is	 biased	 towards	 selecting	 points	 with	 low	 MI	 with	
previously	selected	points.	Assume	that	the	point	marked	with	an	arrow	is	selected.	Next,	 the	MI	
between	the	first	two	points	and	all	the	remaining	points	is	computed.	The	result	is	shown	in	Figure	
6.	 As	 can	 be	 seen,	 the	 next	 best	 point	 is	 also	 on	 the	 “bump”	 since	 this	 point	 is	 also	 useful	 for	
constraining	the	pose.	

	

Using	these	three	points	in	the	ICP	algorithm	results	in	a	much	better	alignment.	Figure	7	shows	the	
convergence	 of	 the	 ICP	 algorithm.	 The	 top	 figure	 shows	 the	 initial	 alignment.	 The	 bottom	 figure	
shows	the	final	alignment	after	21	iterations.	

	
Figure	5:	The	mutual	information	between	the	first	point	and	all	other	points	are	shown.	The	point	with	the	

minimum	mutual	information	is	marked	with	an	arrow.

1st
0.12 0.11 0.09 0.08 0.08 0.08 0.07 0.03

0.00 0.05
0.16

0.27 0.39 0.56 0.82 1.19 1.70 2.40 3.52 3.77 2.89 2.42 2.12 1.90 1.74 1.61 1.51 1.42 1.35

	
Figure	6:	The	mutual	information	between	the	first	two	points	and	all	other	points	are	shown.	The	point	with	the	

minimum	mutual	information	is	marked	with	an	arrow.	

1st

2nd

4.18 4.50 5.19 4.69 2.71 1.95 1.71 1.99

2.13
1.70

1.96 2.53 3.38 4.31 5.09 5.73 6.46 7.59 7.84 6.96 6.49 6.18 5.96 5.80 5.67 5.57 5.48 5.41
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5 Detailed	Approach	
Our	goal	will	be	to	determine,	given	a	set	of	selected	points,	what	is	the	additional	information	gained	
by	selecting	an	additional	point.	Following	the	derivation	of	Davison,	in	[18],	we	formulate	the	mutual	
information	 in	 terms	of	 the	overlapping	 information	between	range	measurements,	 	and	 	and	
their	constraints	on	the	computed	pose.	

	 ;
1
2
log ,	 2	

where	  is	the	covariance	between	range	measurement	 	and	 .	For	our	range	measurements,	
we	assume	the	error	in	the	direction	to	each	point	is	negligible	and	the	only	error	is	the	measurement	
of	the	range.	This	is	typical	of	many	range	sensors,	which	have	the	largest	component	of	uncertainty	
along	the	direction	to	the	point.	

In	order	to	implement	the	approach	described	we	must	first	understand	the	Jacobian	relating	how	
changes	in	the	pose	affect	changes	in	the	range	measurements.	This	is	described	in	Section	5.1.	We	
will	see	that	this	Jacobian	is	dependent	on,	among	other	things,	an	estimate	of	the	surface	normal	
associated	with	the	measurement.	In	order	to	estimate	this	uncertainty	we	develop	a	probabilistic	
association	 of	 the	 point	 measurement	 with	 the	 model	 in	 Sections	 5.2	 and	 5.3.	 This	 results	 in	 a	
probabilistic	Jacobian	and	allows	us	to	compute	the	mutual	information	between	subsets	of	points,	
which	leads	to	a	model	constraint	score	(Section	5.4)	and	finally	the	full	DIRSAC	algorithm	(Section	
5.5).	

5.1 Relating	changes	in	the	pose	to	changes	in	range	measurements	
Assume	that	we	have	approximate	knowledge	of	the	pose	of	the	sensor.	The	pose	can	be	represented	
as	6‐element	vector	 ,	consisting	of	translation	 , , 	and	rotation	 , , .	We	choose	to	adhere	
to	one	of	the	Euler	rotation	conventions,	using	the	Z‐Y‐X	rotation	order	detailed	in	[19],	though	any	
standard	angle	convention	will	suffice.	We	also	have	the	model,	represented	by	a	set	of	small	planar	
facets.	We	can	predict	a	 range	measurement	 	in	any	direction	by	 intersecting	 the	ray	with	 the	

	

	

	
Figure	7:	Performance	of	the	ICP	algorithm	with	directed	point	sampling.	(Top)	Initial	point	positions,	with	closest	
corresponding	points	shown.	(Middle)	Alignment	after	first	iteration.	(Bottom)	Final	convergence	of	ICP	algorithm	

after	21	iterations.	
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model.	Let	 	be	a	function	that	returns	the	predicted	range	for	a	given	point;	i.e.,	 .	For	
small	perturbations	of	 ,	we	can	write	the	resulting	perturbation	of	 .	After	a	Taylor	series	expansion	
and	linearization	we	have	

	 	 3	

where	 	is	the	Jacobian	which	describes	how	small	changes	in	 	will	affect	the	range	measurement	ρ.	
	is	given	by	

	 	 4	

The	following	derivation	of	 	treats	the	translation	and	rotation	components	separately.	

5.1.1 Translational	Components	

We	compute	the	first	three	elements	of	  in	Equation	4	by	perturbing	the	sensor’s	position	by	 .	From	
Figure	8(a),	 the	projection	of	p	onto	 	is	 the	same	as	 the	projection	of	 ′	onto	 ,	or	 ∙

̂ ∙ ,	where	 ,	so	 ∙ ∙ .	Decomposing	 	in	the	x,	y,	and	z	dimensions,	we	
have	

	 	 , 0,0 : ̂ ∙ ⇒
̂ ∙

	 5	

	 	 0, , 0 : ̂ ∙ ⇒
̂ ∙

	 6	

	 	 0,0, : ̂ ∙ ⇒
̂ ∙

	 7	

where	 ̂ , , 	and	 , , .	This	provides	us	with	the	translational	components	of	
the	Jacobian,	which	are	the	first	three	elements	shown	in	Equation	4.	

	

(a) Translational	Elements	 	 (a) Rotational	Elements	

Figure	8:	Components	necessary	to	derive	the	translational	and	rotational	elements	of	the	 .	A	point	p	is	
measured	in	the	sensor’s	coordinate	frame	S in	the	direction	of	the	unit	vector	 .	The	normal	to	the	plane	

is	 .	The	angle	between	the	plane’s	normal	and	the	point	direction	 	is	ψ.	
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5.1.2 Rotational	Components	
Employing	the	law	of	sines	and	the	small	angle	approximation	with	Figure	8(b),	we	can	show	that	

	
sin
cos

̂
∙ ̂

.	 8	

Decomposing	for	each	angular	element	we	have	the	following.	

	
̂ ̂
∙ ̂

,
̂ ̂
∙ ̂

,
̂ ̂
∙ ̂

.	 9	

We	can	now	write	the	full	expression	for	the	Jacobian	from	Equation	4:	

	
̂ ∙ ̂ ∙ ̂ ∙

̂ ̂
∙ ̂

̂ ̂
∙ ̂

̂ ̂
∙ ̂
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5.2 Covariance	of	Range	Measurements	

For	N	points,	we	can	stack	the	 ’s	from	Equation	10	to	form	the	relationship	 ,	where	 	is	an	
6 	matrix,	 containing	 one	 row	 for	 each	 measurement	 ,	 and	 	is	 the	 vector	 of	 range	

measurement	changes	resulting	from	the	small	changes	in	the	pose	( ).	The	covariance	of	 	is	

	 ,	 11	

where	 ∙  is	 the	expected	value	operator.	 	is	not	 a	 random	variable	 and	we	 can	 remove	 it	 from	
within	the	expected	value	and	write	

	

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯
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where	 	for	 the	 th	and	 th	points.	This	 covariance	matrix	 for	 	contains	 the	 elements	
required	to	compute	the	mutual	information	as	in	Equation	2.	

If	the	covariance	of	the	pose,	 	is	known	a	priori,	it	can	be	used	in	Equation	12.	However,	if	the	a	
priori	covariance	is	not	known,	we	simply	use	a	large	covariance	for	 ,	meaning	that	all	the	degrees	
of	freedom	are	assumed	to	be	completely	unconstrained.	For	example,	the	translation	uncertainty	
can	 be	 considered	 to	 be	 the	 size	 of	 the	workspace.	 Similarly,	 the	 orientation	 uncertainty	 can	 be	
considered	 to	 be	 the	 full	 range	 of	 possible	 orientations.	 In	 our	 experiments,	 we	 use	 a	 standard	
deviation	 of	 10 	and	 150o	 for	 position	 and	 orientation	 uncertainty.	 The	 absolute	 scale	 of	 the	
covariance	is	not	important	as	it	cancels	out	in	the	mutual	information	computation.	

5.3 Estimation	of	Point	Normals	
The	Jacobian	from	Equation	10	is	dependent	on	the	direction	to	the	point	 ,	the	range	to	the	point	 ,	
and	 the	 local	 model	 normal	 .	 The	 sensor	 provides	 	and	 	directly.	 We	 must	 estimate	 .	 One	
possible	method	would	be	 to	estimate	 	using	 the	point	cloud	data.	However,	 for	noisy	data,	and	
possible	 un‐modeled	 observed	 structure,	 this	 can	 be	 problematic.	 For	 these,	 the	 normals	 will	
erroneously	imply	good	constraints,	where	the	a	priori	model	does	not	support	them.	
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A	better	approach	associates	points	with	the	model.	This	can	be	problematic	as	well	since	we	do	not	
know	the	correct	associations.	We	can	instead	compute	the	most	likely	normal	by	probabilistically	
associating	the	sensed	point	with	the	model.	As	described	in	the	next	sub‐sections,	we	start	with	the	
uncertainty	of	the	sensor’s	measurement	system,	incorporate	the	uncertainty	of	the	sensor’s	pose	in	
the	world,	and	finally	associate	the	uncertainty	of	the	point	in	the	world	with	the	model.	

5.3.1 Computation	of	Point	Covariance	
The	sensor	provides	a	set	of	range	measurements	in	the	form	of	a	3D	point	cloud,	 ,	in	the	sensor’s	
reference	frame,	 .	Let	 	be	a	point	in	the	cloud;	then	 	is	a	unit	vector	in	the	direction	from	the	origin	
of	the	sensor	to	 ,	and	 	is	the	range	to	 	such	that	 .	We	would	like	to	associate	each	point,	 ,	
with	a	point	 	on	the	surface	of	a	prior	model,	 ,	defined	in	the	world’s	reference	frame,	 .	Recall	
that	 	is	 the	pose	of	 the	 sensor	while	 capturing	 .	We	 can	use	 the	uncertainty	of	 	in	 ,	 and	 the	
uncertainty	 of	 	to	 determine	 the	 uncertainty	 of	 .	 Let	 , 	be	 the	 function	 that	
transforms	 	from	the	coordinate	frame	of	the	sensor	to	the	coordinate	frame	of	the	model,	where	 	
is	a	3 3	rotation	matrix	and	 	is	the	translation	of	the	sensor	with	respect	to	the	model.	The	Taylor	
series	expansion	and	linearization	around	small	perturbations	of	 	and	 	give	us	the	change	in	the	
position,	 ,	as	a	function	of	changes	in	 	and	 .	

	 	 13	

Since	the	error	in	the	sensor’s	measurement	is	independent	of	the	pose	 ,	the	cross	covariance	terms	
will	be	zero	and	the	covariance	of	 	in	  is	

	 	 14	

where	 	is	 the	provided	covariance	of	 the	sensor’s	pose	 	in	 ,	and	 	is	 the	covariance	of	 	in	 .	
Thus	we	are	left	to	find	the	Jacobians	 	and	 .	

5.3.2 Computation	of	Jacobian	 	
Using	the	Z‐Y‐X	Euler	rotation	convention,	the	rotation	matrix	is	(using	the	shorthand	notation	of	

≡ ,	and	 ≡ )	

	 	 15	

Taking	the	partial	derivative	of	this	with	respect	to	the	elements	in	 	gives	us	the	Jacobian	 .	

	 	 16	

where	 , , 	and	 , , , , , .	
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5.3.3 Computation	of	Jacobian	 	

	in	Equation	14	relates	changes	 in	 	due	 to	changes	 in	 .	We	use	a	spherical	coordinate	system,	
, , ,	such	that	 sin cos , sin sin , cos .	The	covariance	in	spherical	coordinates	

is	all	zero	except	for	the	upper	left	entry,	which	is	 ;	i.e.,	the	variance	of	the	range	noise	of	the	sensor.	
We	can	write	 	by	taking	the	partial	derivatives	with	respect	to	 .	

	
0

	 17	

We	 now	 have	 all	 the	 necessary	 components	 to	 completely	 specify	 the	 covariance	 of	 ,	 ,	 using	
Equation	14.	

5.3.4 Probabilistic	Jacobian	
We	now	have	a	probabilistic	association	between	 	and	 .	However,	 there	may	be	multiple	 facet	
associations	within	 .	We	can	compute	a	probability	of	association	to	each	facet	and	compute	an	
expected	value	for	our	Jacobian	by	summing	over	all	model	facets	 1… 	and	multiplying	by	the	
probability	 , 	that	the	 	data	point	is	associated	with	model	facet	 .	

	 , ̂ , , ̂ , , ̅ 	 18	

Using	 ̅ 	for	the	point	Jacobians	in	Equation	12,	we	can	now	solve	for	 	and	compute	the	mutual	
information.	

We	note	that	many	model	facets	will	only	have	a	negligible	contribution	to	this	summation	because	
their	 , 	will	be	very	small.	Thus,	computing	the	weight	of	all	facets	on	the	model’s	surface	mesh	is	
unnecessary.	 A	 reasonable	 approximation	 is	 to	 look	 only	 at	 triangles	within	3 	of	 .	We	 use	 an	
efficient	method	to	find	the	closest	point	on	the	model	( )	to	a	3D	point	in	space	when	we	know	the	
uncertainty	of	the	pose.	From	Equation	14,	we	have	the	covariance	of	the	point	in	the	world,	 .	From	
this	we	can	find	the	most	probable	association	of	 	to	  for	use	in	the	ICP	algorithm.	Essentially,	we	
use	the	Mahalanobis	distance	to	find	the	nearest	neighbor	of	a	data	point	on	the	model.	We	do	this	
by	transforming	the	model	 ,	by	a	special	matrix	 .	We	choose	 	such	that	the	new	covariance,	

,	is	equal	to	the	identity	matrix.	This	is	referred	to	as	a	“whitening	transform”	[20],	and	is	given	

by	 ,	where	 	is	the	diagonal	matrix	whose	elements	are	the	eigenvalues	of	 ,	and	 	is	the	
corresponding	set	of	eigenvectors.	This	transformation	by	 	allows	us	to	use	existing	fast	tools	to	
find	the	closest	point	on	 	while	still	considering	the	uncertainty	of	 .	

5.4 Model	Constraint	Score	
Before	we	present	the	full	DIRSAC	algorithm,	we	would	like	to	present	a	useful	metric	to	quantify	the	
degeneracy	 of	 a	 point	 set.	 Recall	 from	 Equation	 3,	 for	 a	 given	 measured	 point,	 the	 relationship	
between	a	small	deviation	in	the	sensor’s	pose	and	the	deviation	in	the	range	measurement	is	given	
by	 ,	and	for	many	points	stacked,	this	relationship	is	 .	Another	interesting	result	is	
to	consider	the	solution	for	the	change	in	the	pose	vector,	 ,	using	the	pseudo‐inverse	as	 ,	
where	 .	
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Computation	of	this	pseudo‐inverse	requires	the	inversion	of	the	6 6	matrix,	 .	In	order	to	invert	
this,	 	must	be	full	rank	and	the	rows	of	 	must	be	linearly	independent.	The	degree	to	which	we	
can	or	cannot	compute	 	is	determined	by	the	condition	number,	 ,	computed	as	the	ratio	of	
the	 largest	 singular	 value	 of	 	to	 the	 smallest	 singular	 value.	 The	 larger	 	is,	 the	more	 ill‐
conditioned	our	problem	becomes.	We	define	a	score	in	which	larger	numbers	will	imply	a	better	
constraint	as	

	
100

	 19	

This	is	a	useful	metric	to	evaluate	the	ability	of	any	set	of	points	to	constrain	their	fit	to	an	a	priori	
model.	To	be	full	rank,	the	set	must	contain	at	least	six	points.	

To	 illustrate	 the	 constraint	 score,	 we	 provide	 the	 singular	 values	 of	 	for	 four	 representative	
models	in	Table	1.	Figure	9(a)	is	unconstrained	in	three	dimensions,	the	two	positional	dimensions	
parallel	to	the	plane,	and	the	orientation	about	a	normal	to	the	plane.	Figure	9(b)	is	unconstrained	in	
two	dimensions,	position	around	the	cylinder,	and	position	parallel	 to	the	cylinder.	Figure	9(c)	 is	
unconstrained	 in	 one	 dimension,	 the	 position	 parallel	 to	 the	 prism.	 Finally,	 Figure	 9(d)	 is	 fully	
constrained	except	for	symmetry,	which	we	are	not	considering.	

	

(a)	“Flat	Slab”	 (b)	“Cylinder”	

	
(c)	“Prism”	 (d)	“Orthogonal	Prisms”	

Figure	9:	Four	models	to	demonstrate	the	constraint	score	based	on	the	singular	values	of	 .	
The	eigenvalues	of	 	are	given	in	Table	1.	
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5.5 Full	DIRSAC	Algorithm	
We	now	present	 the	 full	 DIRSAC	 algorithm	 in	 Figure	 10.	We	 first	 acquire	 scan	 data	 (line	 1)	 and	
compute	each	point’s	Jacobian	as	in	Equation	18.	For	each	iteration	of	DIRSAC,	we	select	a	random	
point	and	compute	the	mutual	information	with	the	remaining	points	(line	6)	to	identify	redundancy.	
We	 randomly	 select	 the	 next	 point	 from	 the	 non‐redundant	 points	 (line	 8).	 This	 continues	 until	
enough	points	have	been	selected	to	constrain	the	fit,	meaning	that	the	constraint	score	is	above	a	
very	low	threshold	(0.01).	

DIRSAC	Algorithm	

1: Acquire	3D	point	cloud	scan	data	
2: Compute	 	as	in	Equation	18	
3: for	the	number	of	DIRSAC	iterations	do	
4: Randomly	choose	an	initial	point	
5: repeat	
6: Compute	the	mutual	information	for	all	remaining	points	with	selected	points	
7: Remove	all	points	where	the	mutual	information	is	greater	than	a	threshold	
8: Randomly	select	next	point	
9: until	constraining	set	has	been	selected	
10: Compute	ICP	using	the	selected	points	
11: Compute	the	residual	error	for	this	fit	
12: if	the	residual	error	has	improved	then	
13: Recompute	the	required	number	of	iterations	based	on	Equation	1	
14: end	if	
15: end	for	
16: Choose	the	best	solution	based	on	the	residual	error	and	inlier	set	
17: Compute	refinement	ICP	using	all	inliers	
18: The	transform	which	best	aligns	the	inlier	set	is	the	pose	of	the	sensor	

Figure	10:	DIRected	Sample	And	Consensus	(DIRSAC)	removes	redundant	data	during	the	random	selection	process	to	
bias	point	selection	to	better	constraining	points	resulting	in	individual	trial	fits	that	provide	good	constrained	solutions.	

Using	 this	 set	of	 selected	points,	we	compute	 ICP,	 iteratively	associating	 the	points	with	 .	As	 in	
RANSAC,	we	compute	the	residual	error	and	identify	the	inliers.	If	the	residual	error	improves,	we	
re‐compute	the	number	of	required	trials	based	on	Equation	1.	After	all	iterations	have	completed,	
we	compute	a	final	refinement	based	on	the	best	set	of	inliers	(line	17)	which	is	our	final	solution.	

Table	1:	The	singular	values	of	 	for	four	synthetic	models.	The	right	column	shows	the	
number	of	free	dimensions	for	each	model.	All	but	the	last	three	models	yield	a	constraint	score	

of	∞	(fully	unconstrained).	

Model	
Name	 λ5	 λ4	 λ3	 λ2	 λ1	 λ0	 Free	

Dims	
Flat	Slab	 47542	 36052	 26718 0	 0	 0	 3	

Cylinder	 313982	 69487	 54745 46278 0	 0	 2	
Prism	 166274	 55136	 47426 32536 4958 0	 1	

Orthogonal	
Prism	 133891	 116422 49597 41258 6966 4992	 0	
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6 System	Configuration	and	Experiments	Performed	
The	 approach	 described	 in	 this	 paper	was	 developed	 as	 part	 of	 a	 Just‐In‐Time	 (JIT)	 localization	
system	for	an	end	effector	mounted	on	the	end	of	a	robot	arm	similar	to,	but	larger	than,	that	shown	
in	Figure	11,	whose	base	was	mounted	to	a	large	mobile	base	unit.	The	localization	of	the	mobile	base	
was	accurate	enough	for	mobility	and	navigation	purposes	and	used	a	completely	different	approach.	
The	initial	starting	estimate	of	this	localization	solution	was	made	available	to	the	JIT	localization	
algorithm	described	in	this	paper.	While	good	enough	for	general	mobility,	the	accuracy	of	the	final	
pose	of	the	mobile	base	was	not	sufficient	for	the	precision	work	required	by	the	end	effector.		

However,	once	the	mobile	base	unit	was	moved	into	position	and	its	pose	was	accurately	determined,	
several	hours	of	work	could	be	performed	from	that	location	using	the	highly	precise	positioning	of	
the	end	effector.	This	made	it	economical	for	the	algorithm	described	in	this	paper	to	take	several	
seconds	 (or	 even	minutes)	of	 computation	 time	 to	determine	an	accurate	pose	of	 the	 robot	with	
respect	to	the	workpiece.	Thus,	by	moving	the	arm	into	several	vantage	points	and	combining	the	
scans	from	multiple	arm	poses,	we	could	perform	scan	matching	to	an	a	priori	model	of	the	workpiece	
to	determine	a	highly	accurate	pose	of	the	base	of	the	arm	in	the	world.	Once	determined,	the	base	
of	the	arm	did	not	move	throughout	the	work	performed	by	the	arm	in	that	position.	

In	 order	 to	 test	 this	 setup,	 the	 smaller	 rigidly	mounted	 arm	displayed	 in	Figure	11	was	used	 for	
testing.	This	section	further	describes	the	sensor	data	acquisition	system	and	the	different	models	
used	for	experimental	analysis	with	this	application	in	mind.	

6.1 Sensor	System	
Our	application	uses	a	SICK	LMS4001	mounted	in	a	nodding	cradle	as	shown	in	Figure	11(a).	The	SICK	
captures	data	using	a	spinning	laser	with	a	70°	horizontal	field	of	view.	The	tilt	range	determines	the	
vertical	field	of	view,	and	the	tilt	is	controlled	by	a	very	accurate	harmonic	drive.	For	our	experiments	
the	vertical	field	of	view	was	set	to	100°.	For	each	line	scan,	the	data	is	collected	by	an	FPGA	and	time‐
tagged.	Each	line	end	is	encoded	with	the	tilt	angle	which	is	used	to	interpolate	the	precise	angle	for	
each	range	measurement.	The	minimum	range	of	the	SICK	is	0.7 	and	the	maximum	range	is	3.0 .	

																																																								
1	For	more	information	on	the	LMS400	and	other	SICK	sensors,	visit	sick.com/us/en‐us/home/	

	
(a)	 (b)	

Figure	11:	The	data	collection	system.	A	SICK	LMS400	laser	scanner	is	
mounted	in	a	nodder	frame	(a).	The	full	nodder	assembly	is	mounted	on	the	

end	effector	of	a	KR16	(b).
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The	 standard	 deviation	 of	 the	 range	 sensor	 error	 is	 approximately	3 .	We	 convert	 line	 scans	
output	by	the	FPGA	to	a	point	cloud	using	the	interpolated	angles	of	the	range	measurements.	

The	sensor	is	mounted	at	the	end	effector	to	capture	test	data	as	shown	in	Figure	11(b).	We	position	
the	arm	as	desired	and	capture	a	single	scan	of	data.	This	arm	state	provides	a	sensor	pose	which	
serves	as	ground	truth	for	the	pose	recovery.	During	the	analysis,	position	and	orientation	errors	are	
added	to	the	sensor	pose	and	we	determine	the	quality	of	the	approach	based	on	the	recovery	of	
these	added	errors.	

6.2 Models	Used	in	Analysis	
We	have	performed	analysis	and	experiments	on	many	models	with	varying	ranges	of	constraints.	
We	present	8	models	here	and	show	results	on	representative	examples.	These	models	were	created	
from	scan	data	 loaded	into	a	3D	modeling	software	and	surface	elements	were	added	by	hand	to	
represent	the	actual	structure.	Modeling	errors	may	exist	for	many	of	the	scenes	as	some	extraneous	
surrounding	structure	may	not	have	been	modeled,	even	if	it	was	scanned.	Images	of	the	scanning	
setup	can	be	seen	in	Figure	11.	

We	report	the	outlier	ratio	for	each	of	the	models	in	Table	2	and	consider	this	characteristic	of	the	
model/scan	setup.	The	outliers	were	identified	by	performing	the	suggested	scans	and	comparing	
the	resulting	scan	to	the	model	using	the	ground	truth	pose.	Points	with	errors	larger	than	2 	of	the	
expected	sensor	standard	deviation	were	counted	as	outlier	points	to	provide	a	characterization	of	
the	data.	

We	group	the	models	into	three	groups	based	on	their	constraint	score.	“Non‐degenerate”	models	
are	well	 constrained	 in	all	dimensions	and	have	a	constraint	score	above	4.5.	 “Quasi‐degenerate”	
models	are	poorly	constrained	in	some	dimensions	and	have	a	constraint	score	between	0.5	and	4.5.	
Models	with	 constraint	 scores	below	0.5	 are	degenerate	or	almost	degenerate,	 and	we	call	 these	
“extremely‐degenerate”.	The	constraint	score	of	each	model	is	displayed	in	parenthesis	in	the	figure’s	
caption	as	well	as	in	the	last	column	of	Table	2.	The	models	used	are	displayed	in	Figure	12.	

7 Results	
This	section	compares	the	performance	of	DIRSAC	to	RANSAC	using	two	different	methods.	In	Section	
7.1,	we	measure	the	probability	that	each	algorithm	will	choose	a	“good”	subset	of	points,	meaning	
that	the	selection	will	lead	to	an	accurate	solution.	In	Section	7.2	we	measure	the	performance	of	the	
full	algorithms,	in	terms	of	the	solution	accuracy,	number	of	iterations,	and	running	time.	

7.1 Good	Solution	Probability	
In	this	experiment,	each	algorithm	(RANSAC	and	DIRSAC)	chose	a	sample	of	6	points.	Then	the	ICP	
algorithm	was	used	to	compute	the	point	correspondences	to	the	model,	and	the	pose	of	the	model.	
The	 final	 pose	 error	 indicates	 the	 “quality”	 of	 the	 sample	 points	 chosen;	 i.e.,	 a	 sample	with	non‐
degenerate	inliers	will	likely	lead	to	a	result	with	low	pose	error.	In	this	experiment,	the	initial	pose	
estimate	for	the	ICP	algorithm	differed	from	the	ground	truth	pose	by	1.6	degrees	in	orientation	and	
6.7	cm	in	translation.	These	values	correspond	to	the	measured	uncertainty	of	our	robot’s	positioning	
system.	Both	DIRSAC	and	RANSAC	started	from	the	same	initial	guesses.	

Table	3	shows	the	probability	of	the	algorithm	to	reduce	the	input	error	by	80%	and	95%,	for	both	
RANSAC	and	DIRSAC.	We	compute	this	by	looking	at	1000	trials	of	the	algorithm	and	counting	how	
many	solutions	reduce	the	 input	errors	by	80%	and	by	95%.	The	values	 in	the	table	are	given	 in	
percentages.	The	 application	described	 in	 this	paper	 could	 tolerate	precision	on	 the	order	of	0.5	
degrees	and	around	1cm.	The	method	used	to	determine	the	pose	of	the	base	could	be	in	error	by	as	
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much	 as	 1.5	 degrees	 and	 6.5cm.	 Thus,	 reducing	 the	 error	 by	 80%	would	 provide	 us	 with	 pose	
accuracy	of	0.3	degrees	and	1.3cm.	An	even	better	reduction	of	95%	would	provide	us	with	0.075	
degrees	and	0.325cm,	well	within	our	expected	operating	range.	

The	DIRSAC	algorithm	shows	considerable	improvement	over	RANSAC.	Especially	noteworthy	are	
the	quasi‐degenerate	models	where	the	probability	of	RANSAC	to	compute	a	solution	which	reduces	
the	position	error	by	at	least	80%	is	only	about	0.3%,	whereas	for	DIRSAC	the	probability	is	about	

	

	

(a) “Clutter”	(13.59)	

	

(b) “Inside	Box”	(4.76)	

	

(c) “Darts	with	Block	Standing”	
(4.12)	

	

(d) “Ground	Cups	with	Darts”	
(2.01)	

	

(e) “Darts	with	4	Blocks”	(1.60)	

	

(f) “Darts	with	Blocks”	(0.40)	

	

(g)	“Darts”	(0.005)	

	

(h) “Flat	Slab”	(0.00)	

Figure	12:	Models	used	in	the	validation	experiments.	The	constraint	score	is	shown	in	parenthesis.	
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24.4%	on	average	for	the	quasi‐degenerate	models.	Even	in	the	“Darts”	model,	which	we	classify	as	
extremely‐degenerate,	DIRSAC	has	an	8.8%	chance	to	reduce	the	position	error	and	a	3.6%	chance	
to	reduce	the	orientation	error	by	80%,	while	RANSAC	has	a	0%	chance	for	position	or	orientation.	

	
7.2 Full	Algorithm	Comparison	DIRSAC	vs.	RANSAC	
This	section	demonstrates	how	the	complete	DIRSAC	algorithm	performs	compared	to	RANSAC.	For	
this	part	of	the	analysis	we	use	the	same	termination	criteria	for	DIRSAC	and	RANSAC	as	suggested	
by	Equation	1,	which	sets	the	number	of	iterations	according	to	the	estimated	inlier	ratio.	

The	true	inlier	ratio	is	typically	unknown	in	advance.	We	use	a	common	approach	(	[10],	[12],	and	
others)	and	update	the	estimated	inlier	ratio	dynamically;	i.e.,	as	a	solution	is	found	that	is	the	best	
so	 far,	 the	observed	 inlier	 ratio	 is	 taken	 to	be	 the	 true	 inlier	 ratio.	Then	 the	 required	number	of	
iterations	 is	 updated	 using	 Equation	 1.	 For	 these	 experiments	we	 set	 the	 desired	 probability	 of	
achieving	a	correct	solution	to	99.5%.	

For	each	of	1000	runs	of	 the	algorithm,	we	select	an	 initial	position	and	orientation	error	 from	a	
normal	distribution,	 0, 0.15 	and	 0,1.5° ,	for	each	of	the	6	pose	elements.	These	values	were	
chosen	because	they	are	much	greater	than	the	expected	a	priori	pose	errors	of	our	actual	system.	

The	plots	in	Figure	13,	Figure	14,	Figure	15,	and	Figure	16	show	position	error	on	top	and	orientation	
error	 on	 the	 bottom.	 The	 first	 column	 shows	 raw	 solution	 errors	 along	with	 starting	 errors	 for	
reference.	The	trials	are	sorted	 in	order	of	 increasing	 initial	error.	The	second	column	shows	the	
difference	in	the	errors	and	the	average	difference.	The	difference	is	computed	as	the	final	DIRSAC	
error	minus	the	final	RANSAC	error.	The	results	are	displayed	as	a	running	average	window	of	10	

Table	2:	Models	used	with	Outlier	Percentages	and	Constraint	
Scores.	

Model	
Name	

Total	
Points	

Outlier	
Percentage	

Constraint
Score	

Non‐Degenerate	Models	
Clutter	 26,356 22.0% 13.59

Inside	Box	 16,854	 22.5%	 4.76	
Quasi‐Degenerate	Models	

Darts	With	
Blocks	
Standing	

27,761	 15.5%	 4.12	

Ground	
Cups	With	
Darts	

27,796	 15.0%	 2.01	

Darts	With	
4	Blocks	 27,723	 15.1%	 1.60	

Darts	With	
Blocks	

27,742	 15.3%	 0.40	

Extremely‐Degenerate	Models	
Darts	 27,830	 15.3%	 0.005	

Flat	Slab	 27,836	 17.7%	 0.00	
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solutions.	 The	 final	 column	 shows	 each	 algorithm’s	 number	 of	 iterations	 and	 runtimes.	 The	
constraint	scores	are	also	provided	in	parenthesis	in	the	figure’s	caption	for	reference.	

	

The	results	for	the	non‐degenerate	“Clutter”	and	“Inside	Box”	models	are	shown	in	Figure	13(a)	and	
Figure	13(b).	RANSAC	estimates	the	position	solution	and	reduces	the	error	consistently,	but	not	as	
well	as	DIRSAC	by	about	30 .	The	orientation	errors	are	also	not	as	accurate	 for	RANSAC.	The	
DIRSAC	error	 improvement	 is	much	better.	 It	 is	notable	 that	DIRSAC	requires	more	 iterations	 to	
compute	 a	 solution,	 but	 finds	 the	 solution	within	 a	 similar	 amount	 of	 time.	 This	 is	 because	 the	
directed	solutions	find	better	alignment	estimates	for	ICP	while	RANSAC	finds	alignment	estimates	
that	are	low	enough	to	converge,	but	require	more	time	to	process.	

The	quasi‐degenerate	models	produce	very	similar	results	(Figure	14(a),	Figure	14(b),	Figure	15(a),	
and	 Figure	 15(b)).	We	 see	 that	DIRSAC	 finds	 solutions	with	much	 better	 position	 accuracy	 than	
RANSAC.	This	 is	 likely	because	with	these	models,	 the	z‐error	 is	easy	to	resolve	and	produce	low	
residual	errors	with	high	inlier	ratios,	but	the	errors	in	the	other	dimensions	are	more	difficult	to	
resolve.	DIRSAC	reduces	the	position	error	considerably	better	for	all	models	(by	about	100mm	on	
average),	although	the	orientation	error	is	about	the	same.	Note	that	DIRSAC	takes	more	iterations	
(and	more	running	time)	to	find	solutions.	This	is	because	RANSAC	terminates	prematurely,	finding	
a	solution	quickly	that	has	low	residual	error,	but	is	incorrect.	

Table	3:	Probability	of	algorithm	to	compute	a	solution	that	reduces	the	error	by	80%	and	
95%.	The	values	are	given	in	percentages.	

Model	
Name	

Position	 Orientation	
DIRSAC	 RANSAC	 DIRSAC	 RANSAC	

Error	
Reduction	 80%	 95%	 80%	 95%	 80%	 95%	 80%	 95%	

Non‐Degenerate	Models	
Clutter	 25.2	 2.4	 6.8	 0.8	 7.9	 0.3	 4.2	 0.2	

Inside	Box	 19.2	 4.8	 3.0	 0.3	 5.9	 0.1	 2.3	 0.0	
Quasi‐Degenerate	Models	

Darts	
With	4	
Blocks	

21.3	 2.3	 0.3	 0.0	 16.3	 0.7	 0.9	 0.0	

Darts	
With	
Blocks	
Standing	

44.9	 6.1	 0.0	 0.0	 35.3	 2.1	 0.2	 0.1	

Ground	
Cups	With	
Darts	

22.2	 3.0	 0.2	 0.0	 15.6	 1.7	 0.2	 0.0	

Darts	
With	
Blocks	

9.2	 1.1	 0.2	 0.0	 23.8	 1.7	 1.3	 0.2	

Extremely‐Degenerate	Models	
Darts	 8.8	 0.2	 0.0	 0.0	 3.6	 0.0	 0.0	 0.0	

Flat	Slab	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	 0.0	
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For	the	extremely‐degenerate	“Darts”	model	(Figure	16),	the	results	indicate	that	neither	RANSAC	
nor	DIRSAC	is	able	to	find	good	solutions.	This	is	to	be	expected,	because	the	vast	majority	of	the	
model	points	are	on	a	plane,	and	there	are	very	few	model	points	off	the	plane	that	constrain	the	
solution.	Although	DIRSAC	can	identify	the	valid	constraining	points,	it	cannot	distinguish	them	from	
outlier	points	(i.e.,	points	with	measurement	errors),	since	both	types	of	points	appear	to	have	low	
mutual	 information	with	 the	planar	points.	The	number	of	outlier	points	 is	much	 larger	 than	 the	
number	 of	 non‐outlier	 valid	 points,	 and	 so	 DIRSAC	 is	 much	 more	 likely	 to	 choose	 sample	 sets	
containing	 the	outlier	points.	 In	 fact,	while	both	 algorithms	 compute	nearly	 the	 same	number	 of	
iterations	in	this	case,	DIRSAC	does	take	much	more	time.	

8 Discussion	
We	have	presented	a	novel	approach	to	find	the	pose	of	a	range	sensor	relative	to	an	a	priori	model	
in	the	presence	of	quasi‐degenerate	data.	By	using	mutual	information	between	point	measurements,	
we	are	able	to	determine	the	constraints	a	set	of	points	will	impose	on	the	pose	solution.	Using	this,	
we	can	direct	the	point	selection	process	in	a	sample	and	consensus	framework.	On	quasi‐degenerate	
data,	the	algorithm	finds	significantly	more	accurate	solutions	than	a	naïve	RANSAC	approach,	for	a	
given	number	of	iterations.	The	total	running	time	of	the	DIRSAC	algorithm	is	greater	than	that	of	
RANSAC;	however	in	applications	where	it	is	important	to	find	the	correct	solution,	using	RANSAC	
would	not	be	acceptable	(even	though	it	is	faster).	In	the	robotics	application	described	in	this	paper,	
the	localization	process	was	performed	only	occasionally;	thus	the	running	time	was	acceptable.	In	
the	case	of	non‐degenerate	data,	the	performance	of	the	algorithm	is	about	the	same	as	the	naïve	
RANSAC	approach.	In	the	case	of	extremely‐degenerate	data,	neither	RANSAC	nor	DIRSAC	is	likely	to	
find	a	correct	solution.	For	these	scenes	a	completely	different	approach	may	be	needed.	We	also	
showed	how	to	quantify	the	degeneracy	of	a	model.	

Another	advantage	of	our	approach	 is	 that	 it	does	not	assume	that	 the	sampling	of	 the	surface	 is	
uniform.	For	example,	some	portions	of	the	model	could	have	higher	density	samplings.	Such	higher‐
density	regions	would	cause	problems	for	RANSAC.	The	higher‐density	regions	would	be	similar	to	
redundant	data	and	would	bias	a	solution	toward	those	regions	in	a	random	sampling	context.	Our	
approach	would	handle	the	non‐uniform	sampling	quite	elegantly.	DIRSAC	would	naturally	identify	
and	remove	the	redundancy	of	the	higher‐density	regions,	which	would	result	in	a	reduction	of	the	
bias	to	those	regions.	

The	following	are	suggestions	for	future	work.	In	this	paper	we	assumed	a	range‐only	measurement	
error	which	is	applicable	in	many	contexts,	but	this	is	not	always	the	case.	A	possible	extension	would	
be	the	development	of	more	extensive	noise	models	and	their	incorporation	into	the	algorithm.	The	
only	required	modifications	are	the	point‐to‐model	association	and	the	development	of	the	Jacobian	
describing	the	constraint	a	point	has	on	the	sensor.	

The	 current	 approach	 uses	 only	 range	 measurements.	 If	 image	 features	 are	 also	 available,	 this	
information	could	be	incorporated	into	the	mutual	information	calculation,	to	help	guide	the	point	
selection	process.	This	would	be	useful	in	cases	where	the	model	is	highly	degenerate.	

Another	 idea	 is	 to	 iteratively	 refine	 the	 sample	 set	 by	 using	 the	 previously	 found	 inliers.	 This	
approach	was	used	 in	 [21]	 for	 fitting	a	 fundamental	matrix.	As	outliers	are	discarded	during	 the	
iterative	process,	the	mutual	information	could	become	more	discriminative.	

Finally,	the	approach	presented	in	this	paper	could	be	useful	in	other	applications.	For	example,	in	
model	building	applications,	where	the	task	is	to	register	a	new	scan	to	an	existing	scan,	the	approach	
could	guide	the	selection	of	measurements	that	will	allow	for	the	most	accurate	registration.	



22	

	

“Clutter”	Model	Starting	Error	vs.	Final	Error	

	

	

(a) “Clutter”	(13.59)	

“Inside	Box”	Model	Starting	Error	vs.	Final	Error	

	

	

(b) “Inside	Box”	(4.32)	

Figure	13:	Convergence	results	for	“Clutter”	and	”Inside	Box”	models.	



Submitted to the Journal of Robotics and Autonomous Systems 

	

23	

	

“Darts	with	Blocks	Standing”	Model	Starting	Error	vs.	Final	Error	

	

	

(a) “Darts	with	Blocks	Standing”	(1.79)	

“Darts	with	4	Blocks”	Model	Starting	Error	vs.	Final	Error	

	

	

(b) “Darts	with	4	Blocks”	(1.93)	

Figure	14:	Convergence	results	for	the	“Darts	with	Blocks	Standing”	and	“Darts	with	4	Blocks”	
models.	
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“Ground	Cups	with	Darts”	Model	Starting	Error	vs.	Final	Error	

	

	
(a) “Ground	Cups	with	Darts”	(1.18)	

“Darts	with	Blocks”	Model	Starting	Error	vs.	Final	Error	

	

	
(b) “Darts	with	Blocks”	(1.18)	

Figure	15:	Convergence	results	for	the	“Darts	with	Blocks”	and	“Ground	Cups	with	Darts”	(1.18)	
models.
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