
Geometry-Based Populated Chessboard Recognition
Youye Xie1, Gongguo Tang1, William Hoff2,3

1Department of Electrical Engineering, Colorado School of Mines, Golden, Colorado USA
2Department of Computer Science, Colorado School of Mines, Golden, Colorado USA

3DAQRI Holographics, Ltd, Vienna, Austria

ABSTRACT

Chessboards are commonly used to calibrate cameras, and many robust methods have been developed to recognize
the unoccupied boards. However, when the chessboard is populated with chess pieces, such as during an actual game, the
problem of recognizing the board is much harder. Challenges include occlusion caused by the chess pieces, the presence
of outlier lines and low viewing angles of the chessboard. In this paper, we present a novel approach to address the above
challenges and recognize the chessboard. The Canny edge detector and Hough transform are used to capture all possible
lines in the scene. The k-means clustering and a k-nearest-neighbors inspired algorithm are applied to cluster and reject
the outlier lines based on their Euclidean distances to the nearest neighbors in a scaled Hough transform space. Finally,
based on prior knowledge of the chessboard structure, a geometric constraint is used to find the correspondences between
image lines and the lines on the chessboard through the homography transformation. The proposed algorithm works for a
wide range of the operating angles and achieves high accuracy in experiments.

Keywords: Chessboard recognition, geometric transformation, Hough transform, K-means.

1. INTRODUCTION

1.1 Background
Chess is a popular intellectual and entertaining game all over the world. Chessboards are also commonly used in

computer vision for tasks such as camera calibration, due to the regular pattern of the lines on the board. By viewing a
chessboard from several camera poses, the line features in different images are used to estimate the extrinsic and intrinsic
parameters of the camera [1,2]. Those parameters include camera poses and the distortion coefficients. In addition, three
dimensional scene reconstruction [3] and lens distortion correction [4] both rely on the accurate estimation of camera
parameters. Many chessboard recognition methods for camera calibration have been developed.

However, when the chessboard is populated with chess pieces, such as during an actual game, the problem of
recognizing the board is much harder. Challenges include occlusion caused by the chess pieces on the board, the
presence of outlier lines in the scene and low viewing angles of the chessboard. Recognizing the board is a necessary
first step for an automated chess playing system [5,6], such as a chess playing robot or an augmented reality chess
assistant. This paper focuses on chessboard recognition under game conditions using a geometric constraint-based
approach. Our approach permits flexible operating angles and allows different occlusion conditions.

1.2 Previous Work
There are several approaches to recognize a chessboard. One straightforward method is using a magnetic board [7] or

embedding sensors in the chessboard. A sensor detector can then recognize the chessboard based on the received signal.
However, a modified chessboard is very expensive and needs to be maintained regularly. Alternatively, computer vision
methods can be used to recognize the chessboard using a single chessboard image. This is more portable and transferable
to different types of chessboards. The MarineBlue chess robot [6] recognizes the chessboard based on hue, saturation and
brightness (HSB) information and compares them with the true chessboard squares to find the board. Another approach
that uses pixel information can be found in [8].

Another class of methods [2,9,10], recognizes the chessboard by using corner detection to determine the board lines.
Those methods achieve promising performance when the camera is directly above the chessboard or there is no
occlusion. But these constraints are undesirable in practice. Alternatively, the Hough transform based line recognition
method allows higher angles and occlusion flexibility since the local occlusion is unlikely to cover the whole lines. One
of such approaches is proposed by Tam et al. [11]. In their approach, edge recognition is implemented first to find all



possible edge points in the image and the Radon transform is used to determine the line locations. However, false edge
intersections may hurt its ability to find the true diagonal lines of the board.

The paper is organized as follows. In section 2, we present our geometry-based populated chessboard recognition
approach. In section 3, we show experimental results on several boards from different viewing angles under different
occlusion conditions. Finally, we conclude this paper in section 4.

2. GEOMETRY-BASED CHESSBOARD RECOGNITION

2.1 Overview of the Approach
This section provides an overview of the geometry-based chessboard recognition process as summarized in Fig. 1.

Figure 1. The overview of the geometric-based chessboard recognition approach.

Given a chessboard input image, the Canny edge detector and the Hough transform are used to find all possible lines.
These lines are then clustered into two groups based on their locations in the Hough transform space. The two groups
represent the two sets of lines on a chessboard (horizontal and vertical). Lines that do not appear to belong to either
group are filtered out in the outlier elimination step, and the intersections of two groups of remaining lines will be
calculated and recorded. Finally, possible chessboard candidates will be projected and matched to a chessboard reference
model. The solution with largest number of matching corners and the smallest matching residual error is chosen as the
final result. The details of each step will be discussed in the following subsections.

2.2 Line Detection
Our approach takes gray scale images as its inputs. We assume that the chessboard is completely contained within

the image and occupies most of the image. The Canny edge detector is applied to find possible chessboard edge points.
The threshold of the detector is adaptively chosen to obtain a number of edge points that is approximately 0.7% of the
input image’s size. After getting the edge image in Fig. 2 (b), the Hough transform is used to detect lines. Each edge
point votes for the lines that pass through it, to create a Hough parameter array (H-space), where each bin stores the
number of edges that lie on the line corresponding to that bin. The H-space is indexed by  and , which are the
parameters of a line using the equation  = x cos() + y sin(). The width of the H-space is 180, corresponding to values
of  from -90 to 89 degrees. The height of the H-space is equal to 2d, where d is the length of the image diagonal. A
simple threshold and non-maximum suppression are implemented in the H-space to filter out weak lines and remove
lines that are too close to stronger lines. Finally, the remaining lines with large counts are recorded and enter the next
step for clustering. The size of the H-space depends on the image resolution. In the next section, we will show how to
handle images with different sizes.

2.3 Lines Clustering & Outlier Elimination
Both line clustering and outlier elimination are performed in the H-space. However, since the height of the H-space

(corresponds to the  parameter) varies depending on the input image size, the clustering result may be affected by the
image resolution. In order to avoid that, Tam et al. [11], cluster the lines based on only the θ values which is sensitive to
the background noise. To pursue a more stable clustering performance, both the ρ and θ values are taken into account in
our approach. The k-means algorithm with a special scaling distance metric is customized to cluster the lines in the H-
space. With this metric, adjacent lines which belong to the same group have a small distance between them as compared
to the distance to a line from the other group.

Specifically, the scaling distance is equivalent to the Euclidean distance in a scaled H-space so that the distance
between two adjacent lines in the  direction and the  direction are weighted equally. We looked at the largest  and
the largest  between two adjacent lines under typical viewing conditions, such that the viewing angle from the vertical
direction is 45 degrees. Empirically we found that if we scale the H-space so that it is square, then these distances are



roughly equal. To visualize the scaling process, the original H-space and the scaled H-space are shown in Fig. 2 (c) and
(d) respectively.

Edge points on the chess pieces and edges from the background may induce spurious chessboard lines. In order to
eliminate the outlier lines and reduce the search complexity in the following steps, we eliminate any line that is far from
the other lines in its own group, using a k-nearest-neighbor (KNN) inspired algorithm. This is done as follows. For each
group in H-space, we find the distance between each point and its nearest neighbor. Points whose distances to their
nearest neighbors are much larger than the mean value are marked as outliers and eliminated. As an example, two false
lines were eliminated as shown in Fig. 2 (e). At the end of this step, all possible intersection points between the two
groups of lines are calculated and are marked in Fig. 2 (f) using yellow diamonds.

(a) (b) (c) (d) (e) (f)

Figure 2. Lines clustering and outlier elimination process. (a) The input image. (b) The edge image (4032x3024 pixels). (c) The raw H-space
(10079x180 pixels). (d) The scaled H-space (180x180 pixels), with clustering results marked by red and green rectangles, corresponding to the two

clusters. (e) The outlier elimination result shown in the scaled H-space. (f) The remaining lines are projected onto the image and intersections between
the two groups of lines are marked by yellow diamonds.

2.4 Geometric Projection & Reference Matching
The next step is to find the correspondence between the image lines and the lines on the chessboard. This is done

using a geometric projection constraint. Our model for the chessboard consists of 9 horizontal lines and 9 vertical lines.
There are 81 intersection points, as shown in Fig. 3 (b). We search for a set of four points from the intersections found in
the previous section, which correspond to the outer corner points of the model. To find the correct set, we compute the
homography transformation that maps the four image points to the outer four points in the model. Then we transform all
remaining points to the model, using the same transformation. Matching points (those with low residual error) are kept as
inliers. An example of inlier points projected onto the model is shown in Fig. 3 (c), and the same points are shown on the
original image in Fig. 3 (d). The transformation with largest number of inlier points and smallest residual error is used as
the estimated transformation.

(a) (b) (c) (d)

Figure 3. The geometric projection and reference matching process. (a) The detected intersection points. (b) True intersection points from the model.
(c) Projection of inlier intersection points onto the model (the input image has also been projected onto the model). (d) The detected chessboard

intersection points on the input image. The outer boundary is marked using green lines.

To search for the set of four detected points that correspond to the board corner points, we simply try all possible
combinations of detected points, starting with the outermost points and proceeding towards the image center. The true
points should be among the outermost points. We cap the number of combinations to be tested.



3. EXPERIMENTS

3.1 Experimental Setup
We test our approach with different kinds of boards as shown in Fig. 3 (d) and Fig. 4 (a)-(c) under different occlusion

conditions and viewing angles. Specifically, three different occlusion conditions are considered. First, there are no pieces
on the board as shown in Fig. 4 (a). Second, only some of the pieces are on the board and their locations are determined
by a chess contest middle game as shown in Fig. 4 (b). Third, all the pieces are on their initial positions as shown in Fig.
4 (c). Moreover, the test images are divided into several classes based on the viewing angles from 10 to 90 degrees. The
viewing angle is determined by the angle between the line of sight from the camera to the board center and the board’s
normal vector as shown in Fig. 4 (d).

The algorithm was implemented in MATLAB on an i7-4710HQ CPU. The processing time is mainly determined by
the number of detected lines to be searched (i.e., the lines found in section 2.2). With a relative clean background as
shown in Fig. 4 (a)-(c), our approach achieves good performance when the number of remaining lines is 27, and in this
case, the average processing time is 2 seconds, as marked by a blue star in Fig. 4 (e). A larger number of remaining lines
means more resistance to false edges and noisy background. However, it requires a longer processing time. The number
of remaining lines should be set to a number such that all the true board lines remain. In our final implementation, we
keep the top 35 strongest lines, and the processing time is around 4 seconds. This is marked in Fig. 4 (e) by a red star.

(a) (b) (c) (d) (e)

Figure 4. (a)-(c) Different test board examples with recognition results. (d) The viewing angle. (e) The relation between remaining lines and the
processing time.

3.2 Results and Analysis
In order to provide a more detailed result, the output is classified into three cases: success, one row or column shifted

and failure. The case of “one row or column shifted” occurs when there is a background line that is parallel to the board
lines, and spaced from the outermost board line by about the same distance as the distance between the valid board lines.
For every fixed occlusion condition and viewing angle, 20 to 30 board images taken at different viewpoints are tested
and we summarize the recognition success rate in Fig. 5 (a)-(c). To further limit the variables, the board type in Fig. 4 (b)
is used and we would expect similar result for different kind of boards based on our experiments with mixed boards.

(a) Board without pieces. (b) Middle game (c) Board with pieces on their initial positions.

Figure 5. The recognition success rate.

From the figures above we can see that our approach achieves almost 100% success rate when the viewing angle is
equal or greater than 40 degrees. When the viewing angle is relatively small such as 30 degrees, we still get good results,
although there are many cases of “one row or column shifted”. More importantly, our workable viewing angle range
matches the angles that a person would naturally view the chessboard during a game. If the viewing angle is less than 30



degrees, many of the pieces will be occluded by other pieces on the board and it would be difficult to recognize all the
pieces with only one viewpoint.

Now we want to point out two common reasons that lead to failure. The first reason is a low angle. From Fig. 5, our
approach fails when the viewing angle is 10 degrees. When the image is taken from an extremely low angle, the
chessboard lines in the far end are too close to each other and some of them are suppressed in the edge recognition step.
Another major reason for failure is occlusion. If the viewing angle is below 30 degrees, with two rows of pieces in front
of the chessboard boundary, the boundary edges can barely be detected and the edges on the chess pieces induce many
false lines. Moreover, since we keep a fixed number of strongest edge lines in the line recognition step, if the background
contains strong spurious edges, we might miss some of the true chessboard edges. Fortunately, this failure can be
overcome by making the chessboard occupy the most part of the image or simply by increasing the threshold for
remaining lines.

4. CONCLUSION
In this paper, a geometry and line-detection based algorithm is developed for populated chessboard recognition. The

Canny edge detector and Hough transform are used to detect the possible chessboard lines in the input image. The
clustering and outlier elimination steps are performed in the H-space to exclude false lines and reduce the geometric
transformation searching complexity. Finally, a geometric projection constraint is applied to find the correct
correspondence between image lines and chessboard lines. Our approach achieves high accuracy within a specific
viewing angle range and is time efficient which only takes around 4 seconds for the whole process with a high resolution
(4032x3042 pixels) image.

REFERENCES

[1] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on pattern analysis and machine
intelligence 22(11), pp. 1330–1334, 2000.

[2] A. De la Escalera and J. M. Armingol, “Automatic chessboard recognition for intrinsic and extrinsic camera
parameter calibration,” Sensors 10(3), pp. 2027–2044, 2010. 6

[3] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruction in real-time,” in Intelligent Vehicles
Symposium (IV), 2011 IEEE, pp. 963–968, Ieee, 2011.

[4] H. S. Sawhney and R. Kumar, “True multi-image alignment and its application to mosaicing and lens distortion
correction,” IEEE Transactions on Pattern Analysis and Machine Intelligence 21(3), pp. 235–243, 1999.

[5] C. Matuszek, B. Mayton, R. Aimi, M. P. Deisenroth, L. Bo, R. Chu, M. Kung, L. LeGrand, J. R. Smith, and D. Fox,
“Gambit: An autonomous chess-playing robotic system,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pp. 4291–4297, IEEE, 2011.

[6] D. Urting and Y. Berbers, “Marineblue: A low-cost chess robot.,” in Robotics and Applications, pp. 76-81, Citeseer,
2003.

[7] L. Miolo, “Magnetic chessboard with self-centering pieces,” Nov. 10 1981. US Patent 4,299,389.
[8] J. E. Neufeld and T. S. Hall, “Probabilistic location of a populated chessboard using computer vision,” in Circuits

and Systems (MWSCAS), 2010 53rd IEEE International Midwest Symposium on, pp. 616-619, IEEE, 2010.
[9] N. Banerjee, D. Saha, A. Singh, and G. Sanyal, “A simple autonomous robotic manipulator for playing chess against

any opponent in real time,” in Proceedings of the International Conference on Computa- tional Vision and Robotics,
2011.

[10]A. Geiger, F. Moosmann,Ö. Car, and B. Schuster, “Automatic camera and range sensor calibration using a single
shot,” in Robotics and Automation (ICRA), 2012 IEEE International Conference on, pp. 3936–3943, IEEE, 2012.

[11]K. Y. Tam, J. A. Lay, and D. Levy, “Automatic grid segmentation of populated chessboard taken at a lower angle
view,” in Computing: Techniques and Applications, 2008. DICTA’08. Digital Image, pp. 294–299, IEEE, 2008.


	INTRODUCTION 
	Background
	 Previous Work
	GEOMETRY-BASED CHESSBOARD RECOGNITION
	 Overview of the Approach
	Line Detection
	Lines Clustering & Outlier Elimination 
	Geometric Projection & Reference Matching
	EXPERIMENTS
	Experimental Setup
	Results and Analysis
	CONCLUSION

