
 

Abstract 
 

Pedestrian detection in low resolution videos can be 

challenging. In outdoor surveillance scenarios, the size of 

pedestrians in the images is often very small (around 20 

pixels tall). The most common and successful approaches 

for single frame pedestrian detection use gradient-based 

features and a support vector machine classifier. We 

propose an extension of these ideas, and develop a new 

algorithm that extracts gradient features from a 

spatiotemporal volume, consisting of a short sequence of 

images (about one second in duration). The additional 

information provided by the motion of the person 

compensates for the loss of resolution.  On standard 

datasets (PETS2001, VIRAT) we show a significant 

improvement in performance over single-frame detection. 

 

1. Introduction 

Pedestrian detection in images or video is an important 

area of research, and has many commercial applications.  

One scenario is the case of stationary outdoor surveillance 

cameras, which are mounted in a high position and look 

down upon a large public area such as a street or plaza.  In 

these scenarios, the size of pedestrians in the images is 

often small, and detection can be challenging.  

The performance of current pedestrian detection 

approaches drops as resolution decreases.  According to 

evaluations of the state of art pedestrian detectors (e.g. [1] 

and [2]); detection performance degrades rapidly at far 

scales; i.e., where pedestrians are 30 pixels tall or less. In 

this case, nearly all pedestrians are missed by even the best 

detectors.  One way to compensate for the loss of 

information due to low resolution is to use a sequence of 

images for detection.  Motion information is a powerful 

cue for recognition.   For example, Figure 1 shows a 

motivating example for the work described here. In a 

single low resolution frame, it is difficult to identify the 

object in the image, but it is much easier in a sequence of 

images in which a subject is performing a recognizable 

movement; i.e., walking. 

 

     
 

     
Figure 1: Sequence of images from a low resolution video of a 

walking person. 

 

In this work, we propose a method to detect moving 

pedestrians in low resolution videos taken by stationary 

outdoor surveillance cameras. We form a spatiotemporal 

volume, consisting of a short sequence of images (about 

one second in duration).  We extract gradient-based 

features from this volume, and train a support vector 

machine classifier to recognize people from the feature 

vectors.  On standard datasets we show a significant 

improvement in performance over single-frame detection. 

The remainder of this paper is as follows. We discuss 

previous work in Section 2. The proposed method is 

presented in Section 3. Section 4 gives a detailed 

description of datasets, experiments, discussion and 

evaluation. The conclusion and future work are 

summarized in Section 5. 

2. Previous Work 

There is an extensive body of literature on pedestrian 

detection. Most work focuses on pedestrian detection in 

single high resolution images. Instead of an explicit model, 

an implicit representation is learned from examples, using 

machine learning techniques. These approaches typically 

extract features from the image and then apply a classifier 

to decide if the image contains a person.  Typically, the 

detection system is applied to sub-images over the entire 

image, using a sliding window approach.  A multi-scale 

approach can be used, to handle different sizes of the 

person in the window. 

The most common and successful approaches for single 

frame pedestrian detection use gradient-based features.  

The Dalal-Triggs detector [3] used a histogram of oriented 

 

Pedestrian Detection in Low Resolution Videos 
 

Hisham Sager 

Colorado School of Mines 

Golden, CO  80401 
hsager@mines.edu 

 

William Hoff 

Colorado School of Mines 

Golden, CO  80401 
whoff@mines.edu 

 

 

 



gradient (HOG) features to detect people. Felzenszwalb, et 

al. introduced the idea of deformable part filters for 

detection [4].     

Most work on pedestrian recognition focuses on 

detection with cameras mounted on moving cars. In this 

scenario, pedestrians can appear at a wide range of sizes in 

the image.  Park, et al. addressed the problem of detecting 

pedestrians at multiple resolutions [5].  They integrated a 

rigid HOG-based template for low resolution, with a 

deformable parts model for high resolution.  They found 

that the part-based model is not useful for pedestrian 

heights less than 90 pixels.  

 Contextual information can improve recognition, since 

in traffic scenes pedestrians are often around vehicles [6].  

Our work does not use contextual information, since we 

wanted to make our approach more general and not limit 

our domain to traffic scenes.  

In our domain, which is the detection of pedestrians 

using stationary outdoor surveillance cameras, we can use 

the additional information provided by image sequences to 

improve performance. One approach is to check 2D object 

detections for consistency with scene geometry and 

convert them to 3D tracks [7].  Other methods applicable 

to tracking in image sequences include active contours, 

particle filters, and level sets, as well as intensity-based 

techniques often applied to tracking faces and whole 

bodies [9].   

Other approaches use features that are similar to Haar 

wavelets [8-11]. Viola and Jones [9] popularized this 

approach and showed its applicability to face detection.  

The features are differences of rectangular regions in the 

images.  These are simple and very fast to compute.  

Although each feature is not very discriminatory, a large 

number of features can to be chained together to achieve 

good performance. In [10] Viola and Jones use Haar-like 

wavelets to compute features in pairs of successive images 

for pedestrian detection.  

Jones and Snow [11] extended the above algorithm to 

make use of 10 images in a sequence. This algorithm is the 

closest one to our approach, since it uses a relatively long 

sequence. They used two types of Haar-like features:  

Features applied within each frame, and differences of 

features between two different frames. On the PETS2001 

dataset, their detector achieves a detection rate from 84% 

to 93% with a very low false positive rate of 10
-6

. They 

were able to detect pedestrians down to a size of 20 pixels 

tall.   

To get better performance, one might try to extend the 

Jones and Snow method to work on longer sequences of 

images.  However, in this case the number of potential 

Haar-like features grows to an unmanageable amount.   

Because of the large number of feature hypotheses that 

need to be examined at each stage, the training time can be 

quite slow (in the order of weeks). 

Another approach to pedestrian detection in image 

sequences is to extract local features from the 

spatiotemporal volume of images. The work of [12] 

extracts spatiotemporal interest points. The interest point 

detector is composed of a 2D Gaussian smoothing kernel, 

applied along the spatial dimensions, and a quadrature pair 

of 1D Gabor filters applied temporally.  This work was 

developed to recognize actions in videos.  Conceivably 

these approaches could be adapted to detect pedestrians 

instead.  However, in low resolution image sequences, it 

would be difficult to extract local features, since the 

volume is so small. 

In summary, existing approaches for pedestrian 

detectors do not perform well for very low resolutions 

(i.e., less than 30 pixel tall pedestrians).  One exception is 

the Jones and Snow algorithm, which detected people 

down to 20 pixels tall.  Our approach, described in the 

next section, is to use a sequence of images for detection 

(as Jones and Snow), but over a relatively longer time 

period.  Instead of 10 images, we utilize up to 32 images.  

The additional information provides better detection 

performance, as described in Section 4. 

3. The Method 

In the proposed algorithm, we extract HOG features 

from a volume of images containing up to 32 frames.  This 

corresponds to 1 to 2 seconds, depending on the camera 

frame rate. This time duration is enough to capture an 

appreciable fraction of a gait cycle, for normal walking 

speeds. 

The proposed detector follows a sliding window 

paradigm which entails feature extraction, binary 

classification, and non-maximum suppression. A multi-

scale approach is used, to handle different sizes of the 

person in the window. The algorithm has 3 primary 

components:  (1) formation of spatiotemporal volumes, (2) 

feature extraction, and (3) classification. These are 

described in the subsections below. 

3.1. Formation of Spatiotemporal Volumes 

To form spatiotemporal volumes, we extract 

subwindows (or “slices”) from the video, at a fixed 

position in the image, for up to 32 frames.  Thus, each 

volume contains up to 32 slices, representing about 1 

second of motion, depending on the frame rate.  The slice 

window size was chosen to be 32 × 32 pixels. This size is 

large enough so the pedestrian remains within the window 

throughout the sequence, at normal walking speeds.  The 

detector is trained to detect pedestrians with a height of 

approximately 20 pixels.  This allows a border of 6 pixels 

in width around the pedestrians.   



 

Figure 2(a) shows an example of a spatiotemporal 

volume of images. The extraction process is repeated 

at multiple scales.  We used a pyramid consisting of 6 

levels, where each level of the pyramid differs from 

the previous level by a factor of 0.75. 

3.2. Feature Extraction 

The feature extraction method is then applied to 

the series of slices that make up the volume (Figure 

2). It starts by dividing each 32 × 32 pixel slice into 

square cells (typically 4 × 4 pixels each), and 

computes a histogram of gradient directions in each 

cell.  We use 9 bins for the gradient directions, which 

represent unsigned directions from 0°-180°.   

Following the method of Dalal [3], cells are 

grouped into blocks, where each block consists of 

2x2 cells.  Blocks may overlap; i.e., they may share 

cells.  We discuss the benefits of overlapping blocks 

in Section 4.  We normalize the gradients within each 

block.  Feature vector normalization improves 

accuracy and makes them more invariant to changes 

in illumination or shadowing.  Next, the features from 

all the blocks in all slices are concatenated into a 

single volumetric feature vector.   

The feature vector size is determined by the 

number of blocks in each slice and the number of 

slices per volume.  Using cells of size 4x4 pixels, 

with no overlap between blocks, the feature vector 

size is 576 features multiplied by the number of 

slices.  If overlap is allowed, there are more blocks in 

each slice and the feature vector size is 

correspondingly larger. 

Following the method of Felzenszwalb [4], we use 

principal components analysis (PCA) to reduce the 

dimensionality of the features.  Feature vectors are 

transformed to principal component space, and only 

those principal components which account for the 

most variance in the data are kept.  Using lower 

dimensional features produces models with fewer 

parameters, which speeds up the training and 

detection algorithms, while keeping detection 

performance about the same.  In the learning stage, 

we collect a large number of 36-dimensional HOG 

features (i.e. for each block) and perform PCA on 

them.  The eigenvalues indicate that the linear 

subspace spanned by the top n eigenvectors (typically 

10 to 15) can capture the essential information in the 

features. 

3.3. Classification 

The final step is to develop a recognition system 

using supervised learning methods.  In this work, we 

trained a support vector machine (SVM) classifier.  

The SVM classifier is a binary classifier that looks 

for an optimal hyperplane as a decision function.  

Once trained on image sequences containing both 

positive and negative examples of pedestrians, the 

SVM classifier can make decisions regarding the 

presence of that object in a test image sequence. We 

used a freely available SVM-based classifier (the 

OSU-SVM MATLAB toolbox) for development and 

testing. K-fold cross-validation is used for parameter 

selection, by partitioning the training data into 5 

equally sized segments, and then iterations of training 

and validation are performed to pick the best 

parameters for the SVM kernels.  We experimented 

with two kernels – a linear kernel and a radial basis 

function kernel.  Although the non-linear kernel gives 

slightly more accurate results, for simplicity and 

speed we use the linear kernel as the baseline 

classifier throughout this study.  

Figure 3 shows the result of weighting the HOG 

descriptor of the example in Figure 2(d) by positive 

SVM weights. The classification decision is based on 

the result in this figure.  As can be seen, the strongest 

features correspond to the general outline of the 

person. 

 
Figure 2: Spatiotemporal Volume. (a) Volumetric positive example. (b) Gradient. (c) Computed HOG for one 

slice. (d) Volumetric HOG descriptor; with block (shown in red color), and cell (shown in yellow color) 

 



 
Figure 3: The HOG descriptor of the example of Figure 2 

(d) weighted by the positive SVM weights. 

4. Experiments and Results 

We chose two standard datasets (PETS2001 and 

VIRAT) to evaluate our algorithm.  These datasets 

contain images taken from stationary surveillance 

cameras, since that was our target application.   Also, 

the PETS2001 dataset was used by Jones and Snow, 

and we wanted to compare our results to theirs, since 

their algorithm was the closest one to our approach.  

In both datasets, data was partitioned into testing and 

training sets.   

To extract positive examples from the training 

videos, the following procedure was followed.  A 

pedestrian was selected in one of the images and a 

square subwindow was extracted from the image, 

surrounding the pedestrian.  This subwindow was 

scaled such that the person was 20 pixels tall, and the 

subwindow size was 32 × 32 pixels.  Next, a 

sequence of subwindows was extracted from the 

images following this image, at the same fixed place 

in the image, and the subwindows were similarly 

scaled.  A total of 32 such slices were assembled into 

a spatiotemporal volume, representing a single 

positive example.  We placed the starting position of 

the window to ensure that the person remained in the 

32x32 window throughout the duration of the 32 slice 

sequence.  Negative examples were also extracted 

from the training images.  These were spatiotemporal 

volumes of the same size as the positive examples, 

but sampled randomly from person-free areas of the 

scene. 

We then applied the detector to the test videos.  In 

principle, the detector should be applied at each pixel, 

in each image. However, our prototype system was 

relatively slow and it was inconvenient to apply it at 

every pixel.  Instead, we applied it to randomly 

selected points in the image where pedestrians 

appeared, as well as person-free points.  Speeding up 

our implementation was beyond the scope of this 

work; however, in principle it should be able to run in 

close to real time, since the operations it uses are 

similar to other real-time systems based on HOG 

features and SVM classifiers. 

4.1. PETS2001 Dataset 

The PETS2001 dataset contains 16 video 

sequences of length of about 2 to 4 minutes each, 

with a frame rate of 25 frames/second, and frame size 

of 768 pixels in width and 576 pixels in height.  Half 

of the videos are designated as training, and half as 

testing. These sequences are taken by a stationary 

camera mounted on a high vantage point.  It looks 

down upon a street and parking lot in front of a 

building.  Cars and pedestrians periodically move 

through the scene. 

We doubled the size of the dataset by flipping all 

frames of each video, i.e. taking the mirror image of 

each frame. The training set consisted of 26,000 

positive slices, and 26,000 negative slices. Figure 4 

shows some examples of positive sequences. Each 

sequence represents 1.28 seconds of activity.  

 

We applied our detector to a test set, consisting of 

the same number of positive and negative examples 

as in the training set; i.e. about 26,000 positive 

examples and 26,000 negative examples.  Figure 5 

shows an image from this test set, with some 

detection examples.  

Using the detector with parameters tuned for the 

best performance, we achieved a detection rate of 

96% with a false positive rate (FPR) of 10
-6

.  

Detection rate is defined as  

   
FNTP

TP
DR


  

where TP is the number of true positives and FN is 

the number of false negatives. At the same FPR, the 

Jones and Snow detector [11] achieved a detection 

rate of 93% on the same dataset.  

4.2. VIRAT Dataset 

The second dataset is the VIRAT dataset. From this 

    
 

     
 

 

    
 

        

Figure 4:  Positive examples from the PETS2001 

dataset, sub-sampled from 32 frame sequences. 



dataset, we used 30 video sequences of length of 

about 0.5 to 5 minutes each, with a frame rate of 30 

frames/second, and frame size of 1280 pixels in width 

and 720 pixels in height.    

 

 
Figure 5: Example detections, PETS2001 dataset. (1) and 

(2) are true positives; (3) is a false positive. 

 

Similar to the PETS2001, the sequences are taken 

by a stationary camera mounted on a high vantage 

point.  It looks down upon a scene containing a street 

and parking lot.  Cars and pedestrians periodically 

move through the scene. 

The training set consisted of 32,000 positive slices, 

and 32,000 negative slices. Positive and negative 

examples were extracted in the same way described 

for the PETS2001 dataset. Figure 6 shows some 

examples of positive sequences.  Each sequence 

represents 1.06 seconds of walking. 

 

    
 

    
 

    
 

    
Figure 6: Positive examples (VIRAT dataset) sub-sampled 

from 32 frame sequences. 
 

We applied our detector to a test set, consisting of 

the same number of positive and negative examples 

as in the training set.  Figure 7 shows an image from 

this test set, with some detection examples. 

On the VIRAT dataset, our best tuned detector 

achieves a detection rate of 93% with a false positive 

rate of 10
-6

. 

4.3. Performance Study and Discussion 

We studied the effects of the choices of various 

detector parameters on the performance.  

Figures 8 and 9 show the effect of the number of 

slices per volume on the detection accuracy, for the 

two different datasets.  Accuracy is defined as 

   
FNFPTNTP

TNTP
Acc




 . 

The results show that including more slices 

improves the accuracy significantly, up to 20% over 

just processing a single frame.   The case where the 

number of slices is equal to one represents the 

standard single frame pedestrian detector method. 

The improvement increases with the number of 

slices, until a total of 16 slices is reached. After that, 

adding more time duration does not improve the 

accuracy. One possible reason is that for the datasets 

that we used, there is enough motion in 16 frames for 

the classifier to tell whether the tested example is a 

pedestrian or not. 

 

 
Figure 7: Example detections, VIRAT dataset. (1) is a true 

positive; (2) is a false negative; (3) is a false positive. 

 

Effect of the number of slices per volume (PETS dataset)
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Figure 8: The effect of the number of slices per volume on 

detection accuracy, for PETS2001. 

 

Figure 10 shows the effect of cell size on detection 

accuracy. The experiments show that a smaller cell 

size outperforms the use of a large cell size. In very 

low resolution images, a small cell size may be better 

able to capture the details of a pedestrian’s body.  
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Figure 9: The effect of the number of slices per volume on 

detection accuracy, for VIRAT. 

 

In addition, our experiments confirmed that local 

normalization is essential for good performance. 

Normalization over blocks improves the accuracy 

detection by a rate of 3% (i.e, from 93% to 96% for 

the PETS2001 database). In addition, normalization 

over slices (instead of blocks in the standard HOG) 

improves the accuracy of detection by 2% over 

normalization over blocks. 

We evaluated detector performance with different 

block overlapping schemes (i.e., 0.5 and 0.75 

overlapping factor). The experiments show that the 

use of overlapping blocks in the descriptor improves 

performance by around 4% (i.e, from 92% to 96% for 

the PETS2001 database).  Overlapping the blocks 

allows a feature to contribute to the decision more 

than one time, whereas if there are no overlapping 

blocks, a cell is coded only once in the final 

descriptor. 

The results described in Section 4.2 were obtained 

using a cell size of 4x4 pixels, block overlap of 0.75, 

and 16 slices per volume. 
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Figure 10: The effect of cell size on detection accuracy. 

5. Conclusions and Future Work 

We have shown that pedestrians can be detected in 

low resolution video if their motion is viewed over a 

sufficiently long sequence of images.  The duration 

should be long enough to capture a complete gait 

cycle; i.e., typically 1 second or more should be long 

enough.  We have built a normalized volumetric 

gradient-based feature set that allows pedestrians to 

be discriminated in low resolution videos, where the 

size of the pedestrians is only about 20 pixels tall.  By 

using sequences long enough to contain a full gait 

cycle, almost 20% improvement over single frame 

detection can be obtained. 

We studied the effect of various parameters on the 

detector performance, and found that including more 

frames in feature vector improves the performance 

significantly, up to about 16 frames. On a standard 

dataset, our detector has a better detection rate than a 

previously published detector that uses Haar-like 

features [11], at the same low false positive rate. 

In future work, we plan to extend our detector so 

that it can work with non-stationary cameras; 

particularly on aerial image sequences. The duration 

of a second or so is reasonable for aerial imagery - 

even though the camera may be moving, a person is 

often in the field of view during that time duration.  

Since our current algorithm extracts slices that are 

stationary with respect to the ground, we will need to 

register the images to compensate for the motion.  

Finally, we plan to optimize our implementation so 

that it can run in close to real time. 
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