
DIRSAC: A Directed Sampling And Consensus

Approach to Quasi-Degenerate Data Fitting

Chris L Baker

National Robotics Engineering Center

Pittsburgh, PA

clbaker@rec.ri.cmu.edu

William Hoff

Colorado School of Mines

Golden, CO

whoff@mines.edu

Abstract

In this paper we propose a new data fitting method

which, similar to RANSAC, fits data to a model using sample

and consensus. The application of interest is fitting 3D point

clouds to a prior geometric model. Where the RANSAC pro-

cess uses random samples of points in the fitting trials, we

propose a novel method which directs the sampling by or-

dering the points according to their contribution to the so-

lution’s constraints. This is particularly important when

the data is quasi-degenerate. In this case, the standard

RANSAC algorithm often fails to find the correct solution.

Our approach selects points based on a Mutual Informa-

tion criterion, which allows us to avoid redundant points

that result in degenerate sample sets. We demonstrate our

approach on simulated and real data and show that in the

case of quasi-degenerate data, the proposed algorithm sig-

nificantly outperforms RANSAC.

1. Introduction

One challenge for real world robotics applications is the

estimation of the robot’s location and orientation (pose) in

a local environment. For any robotic system to perform

meaningful tasks, accurate localization information is cru-

cial. Recent availability of relatively low cost 3D range

sensors have enabled the use of range information to es-

timate the platform’s local pose. One common approach

fits point clouds to a prior model using an Iterative Clos-

est Point (ICP) algorithm [2]. This approach can suffer

when the data is contaminated by outliers. Traditional sta-

tistical approaches have been used to improve robustness to

this noisy data. For example, a RANdom Sampling And

Consensus (RANSAC) algorithm has been demonstrated to

provide good results in noisy environments. RANSAC has

been used in many contexts, but was perhaps first intro-

duced in [6].

It is common for the available data to be in a degenerate,

or quasi-degenerate state. By “degenerate” we mean that

some of the solution dimensions are not constrained by the

data. By “quasi-degenerate” we mean the case where the

constraining data is indeed present, but is a small percentage

of the full data available, such that it would likely be omitted

if a random subset were chosen to compute a fit.

Consider the pathological case of a planar surface. The

constraints are along the direction orthogonal to the surface,

and the orientation about the axes contained within the pla-

nar surface. Unconstrained are the rotation about the plane’s

normal and the position along the dimensions parallel to the

plane. Consider a small non-planar feature in the sensor’s

field of regard positioned on the planar surface. The current

naïve RANSAC algorithm would be overwhelmed by the

preponderance of planar data and would likely not consider

the relatively small but critical constraints of the non-planar

data because this critical data would be considered outlier

data. Thus, the algorithm may never select a sample set that

includes the critical non-planar points (or, may take a long

time to find it). The resulting solution could be a completely

erroneous solution even though it may have a low residual

error.

The problem is that the naïve RANSAC algorithm is very

likely to pick sample sets that are degenerate. Some of the

points in such sets are redundant, in the sense that they don’t

add any information in terms of constraining the solution.

While there are methods to detect the degeneracy of such

sample sets (as described in Section 2), it would be better to

avoid selecting redundant points in the first place. If redun-

dant points could be avoided, then the algorithm would not

waste time analyzing degenerate sample sets. Thus, fewer

iterations would be needed, resulting in a faster, more robust

algorithm.

This paper proposes an algorithm (Section 3) that selects

points in such a way as to avoid degenerate sample sets.

Instead of a purely random point selection, we direct the se-

lection of points to avoid redundancy with already selected

points. The algorithm, called DIRSAC, directs point selec-

tion within a sample and consensus framework. The main



idea is that we evaluate each point based on its ability to

constrain the pose of the solution. We can then detect redun-

dant points by computing the mutual information between

them. Experimental results (Section 4) show significant im-

provements over the naïve RANSAC algorithm.

2. Previous Work

The RANSAC algorithm is a well-established approach

in the Computer Vision community. The naïve RANSAC

algorithm first randomly selects a minimum subset of points

to compute a fit. The Iterative Closest Point (ICP) algorithm

is used to compute the point correspondences to the model,

and the pose of the model in the sensor’s reference frame.

Once computed, the remaining data is used to evaluate the

fit. In addition to the residual error, a set of inliers is iden-

tified as points that fall within some error threshold. This

process repeats until a reasonable probability exists that a

good solution has been computed. The list of plausible so-

lutions are searched in order of increasing error until a so-

lution with enough inliers has been found.

Significant effort has been made to improve the runtime

speed of RANSAC while still guaranteeing a correct so-

lution with some probability. A good review of current

approaches to RANSAC improvements is provided in [9].

Some approaches attempt to optimize the model verifica-

tion step. For example, Matas and Chum [8] have designed

a pre-evaluation stage which attempts to quickly filter out

bad hypotheses. The concept of early-termination was also

extended by Capel [3]. Another strategy is to bias the point

selection such that points with a higher inlier probability

will be treated preferentially in the random point selection

process. For example [4] orders the points based on image

feature matching scores, using the assumption that a higher

similarity in the feature match will increase the likelihood of

the point match being an inlier. Once the points are sorted,

they perform RANSAC over a PROgressively larger subset

from the top of this sorted set of points (PROSAC).

The number of iterations required for the RANSAC al-

gorithm depends on the frequency of inliers. If λ is the frac-

tion of inliers, then the number of iterations S to find a good

solution (i.e., a sample set with no outliers) with probability

η must be at least

S =
log (1− η)

log (1− λm)
(1)

where m is the size of each sample.

In the case of quasi-degenerate data, a sample set must

be found that not only contains all inliers, but also is not

degenerate. For this, the required number of RANSAC it-

erations can be much larger as Frahm et al. described in

detail in Section 3 from [7]. Their approach to solve this

problem assumes that the model estimation problem can be

expressed as a linear relationship Ax = 0, where x is the

vector of parameters to be fit, and A is a matrix containing

the data from a sample set of matches. They describe an

algorithm which can detect degeneracy in A, and are able

to estimate the actual number of degrees of freedom in the

data. However, they evaluate the sample set after the points

have been selected to determine if the selected points are in

a degenerate configuration. This approach requires search-

ing through the model constraint space in a non-trivial way

which is costly. We would like to avoid degenerate con-

figurations altogether by choosing points in such a way that

they will provide us with non-degenerate solutions. Further-

more, the assumption of a linear data fitting relationship is

not applicable to our problem of finding a rigid body trans-

formation using ICP.

Although not specifically developed for RANSAC, in

[5], Davison develops an algorithm to select points based

on the Mutual Information (MI ) constraint. He then uses

this to determine which point, in a feature tracking context,

would provide the most information to the state if used as an

observation. As described in the next section, our approach

extends this work and applies it to the current context of

matching 3D data with a prior model. Using this, we are

able to sort the 3D points by their added information and

direct our sampling.

3. Method and Approach

We would like to direct the point selection based on the

likelihood of a point constraining the fit. In order to do this,

we need to compute the effect a point, or a set of points,

will have on the uncertainty of the pose. In this develop-

ment we assume that the only uncertainty is in the range

measurement of the sensor. There is additional sensor un-

certainty in the direction to the range measurement, but it

will be negligible in comparison. We begin by developing

the relationship between the sensor’s pose and a range mea-

surement.

3.1. Range Covariance from Sensor Covariance

We represent the pose of the sensor in the world as a vec-

tor x of pose elements (x, y, z, αr, αp, αy), where (x, y, z)
is the position of the sensor in the world, and (αr, αp, αy)
represents the orientation of the sensor in the world (roll ,

pitch , yaw ). With this, we can predict the range measure-

ment for the ith point using the function ρi = hi(x). For

small perturbation of the pose x, we can write the resulting

perturbation of ρi. After a Taylor’s series expansion and

linearization we have the following for the ith point:

∆ρi =
∂hi
∂x

∆x = Ji∆x (2)



Figure 1. The components of the elements of the Jacobian for

translation. The sensor coordinate frame 〈S〉 has a point p which

is in the direction of the unit vector p̂. n̂ is the normal to a plane

representing the local model’s surface. Perturbing the plane by ~ǫ

will change the range to the sensor by δρ.

Figure 2. The components for the rotational elements of the Jaco-

bian. The sensor coordinate frame 〈S〉 has a point p in the direc-

tion of the unit vector p̂. The normal to the local model surface is

n̂. The angle between the plane’s normal and the point direction

p̂ is ψ. When the orientation of the sensor is perturbed by some

small angle δα, the change in the range to the model’s surface is

given by δρ.

where Ji is the Jacobian which describes how small changes

in the elements of the pose will effect the ith range measure-

ment ρi, or more specifically,

Ji =
[

∂hi
∂x

∂hi
∂y

∂hi
∂z

∂hi
∂r

∂hi
∂p

∂hi
∂y

]

(3)

3.1.1 Translational Component of Jacobian

We can compute the first three elements of Ji by fixing the

sensor frame and perturbing the model in the sensor’s frame

by some small translational element ~ǫ (see Figure 1).

~ǫ · n̂ = −δρp̂ · n̂ (4)

Where · is the standard vector inner product. By separating

ǫ into vectors with components only along x, y, and z, we

can compute the positional elements of the Jacobian.

[

∂hi
∂x

∂hi
∂y

∂hi
∂z

]

=
[

−nx

p̂•n̂

−ny

p̂•n̂
−nz

p̂•n̂

]

(5)

3.1.2 Rotational Component of Jacobian

For the rotational elements of the Jacobian, we have (see

Figure 2):

ρ cosψ = ρ cosψ cos δα + ρ sinψ sin δα+

δρ cosψ cos δα + δρ sinψ sin δα (6)

Using a small angle approximation such that cos(δα) ap-

proximately equals 1 and sin(δα) approximately equals δα,

we have

δρ =
−ρδα sinψ

cosψ + δα sinψ
(7)

For small δα, this is approximately equivalent to

[

∂h
∂αx

∂h
∂αy

∂h
∂αz

]

=
[

ρ
nz p̂y−ny p̂z

n̂•p̂
ρnxp̂z−nz p̂x

n̂•p̂
ρ
ny p̂x−nxp̂y

n̂•p̂

]

(8)

Thus, using Equation (5) and Equation (8), with Equation

(3), we have the full expression for the Jacobian in terms of

simple dot and scalar products.

3.1.3 Full Covariance Matrix for ~∆ρ

Suppose we haveN points for which we would like to eval-

uate the effect they have in constraining the sensor’s pose

based on their combined information. From the Jacobian

in Equation (3), we can write out the full covariance matrix

for each point associated with the current pose of the system

and stack these for the following vector relationship.

~∆ρ =











∆ρ1
∆ρ2

...

∆ρN











=











J1(n̂1, p̂1, ρ1)
J2(n̂2, p̂2, ρ2)

...

JN (n̂N , p̂N , ρN )











∆x = J∆x (9)

Thus, we know the covariance, C ~∆ρ
, of the vector ~∆ρ is:

C ~∆ρ
= E

[

~∆ρ ~∆ρ
T
]

= E
[

J∆x(J∆x)T
]

= JCxJ
T (10)

where Cx is the input covariance of the pose x and E [•] is

the expectation operator. Note, the dimensionality of J is

N × 6, and Cx is 6 × 6, which implies the covariance of

C ~∆ρ
is N ×N , or explicitly:

C ~∆ρ
=











Cρ1ρ1
Cρ1ρ2

. . . Cρ1ρN

Cρ2ρ1
Cρ2ρ2

. . . Cρ2ρN

...
...

. . .
...

CρNρ1
CρNρ2

. . . CρNρN











(11)

where Cρiρj
= JiCxJ

T
j .



3.2. Mutual Information to Direct Point Selection

The Mutual Information (MI ) of two continuous distri-

butions is the average expected reduction in entropy of one

parameter on learning the exact value of the other, given by

(from [5]):

I(X;Y ) = H(X)−H(X|Y )

=
∑

x∈X,y∈Y

p(x, y)δxδylog2
p(x|y)

p(x)
(12)

where δx and δy are discrete bin sizes where the discrete

probability density function is defined. In the limit as δx→
0 and δy → 0 we have

I(X;Y ) =

∫

x,y

p(x, y)log2
p(x|y)

p(x)
dxdy (13)

For the measurement of our range value, we can assume

a Gaussian distribution for p(x). Consider two different

ranges ρa, and ρb. The probability density function of ρa
is

p(ρa) = (2π)−
1

2 |Cρaρa
|−

1

2 e
−

1

2
(ρa−ρ̂a)

T
C
−1

ρaρa
(ρa−ρ̂a)

(14)

If we know the value that ρb will take on, we can write the

updated value for ρa and the covariance for ρa as

ρ̂′a = ρ̂a + Cρaρb
C
−1
ρbρb

(ρb − ρ̂b) (15)

C
′

ρaρa
= Cρaρa

− Cρaρb
C
−1
ρbρb

Cρbρa
(16)

This allows us to write the conditional probability for ρa
given that we know the range ρb as

p(ρa|ρb) = (2π)−
1

2 |C′

ρaρa
|−

1

2 e
−

1

2
(ρa−ρ̂a

′)TC′−1

ρaρa
(ρa−ρ̂a

′)

(17)

With this, Equation (13) becomes

I(ρa; ρb) =
1

2
log2

|Cρaρa
|

|Cρaρa
− Cρaρb

C
−1
ρbρbCρbρa

|
. (18)

This allows us to compute the full Mutual Information

matrix MI in terms of covariances computed in Equation

(11):















∗ I(ρ1; ρ2) I(ρ1; ρ3) . . . I(ρ1; ρN )
I(ρ2; ρ1) ∗ I(ρ2; ρ3) . . . I(ρ2; ρN )
I(ρ3; ρ1) I(ρ3; ρ2) ∗ . . . I(ρ3; ρN )

...
...

...
. . .

...

I(ρN ; ρ1) I(ρN ; ρ2) I(ρN ; ρ3) . . . ∗















(19)

The MI matrix allows us to evaluate the information cor-

relation between points. Each point has an associated row

and column. For entries with high scores, the information

provided between the row’s point and the column’s point is

likely to be redundant. For example, the redundant infor-

mation may be that their positions are close, or that their

normals are aligned. It is not the precise dimension of the

redundancy, but rather the existence of redundancy, as in-

dicated by the MI , that allows us to sort the points for a

directed selection. The mutual information between a point

and itself is meaningless, thus the ∗’s along the diagonal.

We use this to direct the choice of points in DIRSAC for

each trial as described in the following section.

3.3. DIRSAC ­ Algorithm Description

After obtaining a scan of 3D data from the range sensor,

we compute the Mutual Information (MI ) matrix (Equa-

tion (19)) associated with the point cloud. The first point

is selected at random which defines a row in MI . This row

contains the information correlation with all other points.

We choose the next best point which adds the most infor-

mation to the system. This is the column with the lowest

score because it has the least correlated information with

our currently selected point. The rows corresponding to the

currently selected points in MI are summed together and

the next best column is chosen from this sum. This is con-

tinued until enough points are selected to compute a fit trial.

Each fit trial consists of associating the selected points with

their corresponding closest point on the model and comput-

ing the rigid transform which best aligns the two sets of

points [1, 2]. Because of this point association step we re-

quire a reasonably good estimate of the initial sensor pose.

Once all the trials are computed, we search through them

to find the best solution with the lowest residual error and

highest set of inliers in the same manner as the standard

RANSAC algorithm.

4. Experiments and Results

We have performed experiments on both simulated and

real data. The simulated scanner is configured to mimic the

Sick LMS400, mounted in a nodder and positioned such

that we have a reasonable view of the surface to be scanned.

In simulation we have the real ground truth of the pose of

the sensor and the model in the world. For the real data, we

used the described method to find the best estimate of the

pose of the sensor with respect to the model being scanned

as ground truth. For both methods, we add an artificial pose

error of around 7cm in position and 2.25◦ to the sensor’s

pose. The proposed method is not inherently limited to this.

However, the point to model association distance within the

ICP algorithm is set to limit the distance to the model to

around 10cm. The novelty presented within this paper is

in the sorting of the points which is based solely on the



point clouds prior to this model association. Thus, we com-

pare to a naïve RANSAC approach which uses the same

fitting methods and with the same starting errors. Using

the DIRSAC approach increases the probability of getting a

good constraining solution so we can reduce the number of

iterations required to guarantee a good final solution.

We present here results from three different surfaces.

First, a scan of the inside of a box, which represents

3 orthogonal surfaces and is well constrained from both

RANSAC and DIRSAC’s perspectives. Because of the ob-

vious good constraints of 3 orthogonal planes, we expect

both algorithms to perform similarly well. Second, we use a

table surface with some small constraining geometry on the

surface. This surface is still well constrained, but because

of the minimal constraining geometry, we expect DIRSAC

to out perform RANSAC. We also present real scanned data

of this surface to demonstrate the algorithm’s performance.

Finally, we scanned a completely flat surface. We know

there are three unconstrained dimensions for a flat plane.

Because the DIRSAC approach will naturally degrade to a

RANSAC approach in the limit, we expect RANSAC and

DIRSAC to perform similarly in this unconstrained envi-

ronment. However, it turns out that DIRSAC does a better

job by attempting to find and use the existing constraints

even when some dimensions are unconstrained.

The results are presented for each model as a set of four

plots. The top row of each figure shows the positional anal-

ysis, and the bottom row is the orientation analysis. Each

point shows a single trial result of the algorithm. For each

trial, six points are selected, and based on the selection of

those six points, a trial fit is performed. Depending on the

set of points chosen, a different resulting error in the final

pose will be computed. The overall distance between the

poses after each of the 150 trials is reported in the upper left

positional analysis portion of each figure. The orientation

error computed as an absolute value of the angle between

the computed solution pose and the ground truth pose is

shown in the bottom left of each figure. The right column of

each figure represents the probability of computing a solu-

tion with error less than the error on the x axis. The starting

error is displayed for reference.

4.1. “InsideBox” Results

This model consists of three orthogonal surfaces which

constrains the fit well. Even in the naïve RANSAC we

expect this surface to be easily localized. As Figure 3

shows, Both algorithms perform similarly. However, there

are still many cases where RANSAC chooses less than opti-

mally constraining points, resulting in higher trial errors. In

contrast, the DIRSAC trial solutions produce the lower er-

rors for nearly every trial because we are actively choosing

points to constrain the fit.

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Iteration Number

D
is

ta
n
ce

 (
m

)

InsideBox Position Error

 

 

dirsac

ransac

starting error

20 40 60 80 100 120 140
0

1

2

3

4

5

Iteration Number

A
n
g
le

 (
d
e
g
)

InsideBox Orientation Error

 

 

dirsac

ransac

starting error

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Distance Error (m)

P
ro

b
a
b
ili

ty

InsideBox Position Error Probabilities

 

 

dirsac

ransac

starting error

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Orientation Error (deg)

P
ro

b
a
b
ili

ty

InsideBox Orientation Error Probabilities

 

 

dirsac

ransac

starting error

Figure 3. “InsideBox” results. Both RANSAC and DIRSAC find

good solutions, but clearly DIRSAC finds lower error solutions

more consistently.

4.2. “Table” Results

This model (shown in Figure 4) was used for both the

simulated “Table” results (Figure 5) as well as the real data

collected in the “TableRealData” results (Figure 6). The

model consists of a table surface with four short 2x4’s

placed in different orientations to provide some minimal

constraining geometry. Because of the shape of this model,

RANSAC and DIRSAC will both recover the z-position,

roll , and pitch of the sensor’s pose because these dimen-

sions are well constrained by the large model surfaces.

However, the x/y-position and yaw of the sensor will be

constrained only by the small amount of data collected on

the 2x4 sides orthogonal to the table’s surface. Thus, for the

results shown in Figures 5 and 6 we are displaying the x/y
dimensions for the positional results and the yaw dimension

for the orientation results.

Notice how in both the simulated and real data cases

RANSAC’s results rarely compute an improvement in these

unconstrained dimensions for any single trial. In con-

trast, DIRSAC regularly computes solutions which refine

these unconstrained dimensions because of the active di-

rected point selection in the DIRSAC algorithm. These re-

sults highlight the benefit of using DIRSAC over the naïve

RANSAC in cases where small features must not be over-

looked to truly constrain the solution.

4.3. “FlatSlab” Results

This model’s results shown in Figure 7 demonstrate that

DIRSAC still out performs RANSAC. This is because the

random point selection does not consider any constraint in-

formation. So, the points may not be evenly spread out.

In the case where we truly have some dimensions uncon-

strained, DIRSAC is still able to select points which con-

strain as much of the solution as possible, such that the



Figure 4. The real data point cloud scan (black dots) of the “Table”

surface shown overlaid on the “Table” model.

20 40 60 80 100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

Iteration Number

D
is

ta
n
ce

 (
m

)

Table Position Error

 

 

dirsac

ransac

starting error

0 50 100 150
0

0.5

1

1.5

2

2.5

3

Iteration Number

A
n
g
le

 (
d
e
g
)

Table Orientation Error

 

 

dirsac

ransac

starting error

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Distance Error (m)

P
ro

b
a
b
ili

ty

Table Position Error Probabilities

 

 

dirsac

ransac

starting error

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Orientation Error (deg)

P
ro

b
a
b
ili

ty

Table Orientation Error Probabilities

 

 

dirsac

ransac

starting error

Figure 5. “Table” results from the model displayed in Figure 4.

To highlight the performance of DIRSAC vs. RANSAC, we are

displaying the unconstrained dimensions only. RANSAC rarely

computes a good solution which reduces the error in the minimally

constrained dimensions. However, DIRSAC reduces the error very

consistently along these unconstrained dimensions.

points on a plane would at least be evenly spread out. This

is another advantage over the standard random selection

even if the solution is not completely constrained. Notably,

RANSAC does get solutions with equally low errors when

compared to DIRSAC, but not nearly as consistently.

References

[1] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares

fitting of two 3-d point sets. IEEE Trans on Pattern Analysis

and Machine Intelligence, 9(5):698–700, May 1987. 4

[2] P. Besl and H. McKay. A method for registration of 3-d

shapes. IEEE Trans on Pattern Analysis and Machine Intelli-

gence, 14(2):239 –256, Feb 1992. 1, 4

[3] D. P. Capel. An effective bail-out test for ransac consensus

scoring. In BMVC. British Machine Vision Assn, 2005. 2

[4] O. Chum and J. Matas. Matching with prosac - progres-

sive sample consensus. In IEEE Computer Society Conf on

Computer Vision and Pattern Recognition (CVPR), volume 1,

pages 220–226, June 20-25 2005. 2

[5] A. J. Davison. Active search for real-time vision. In Tenth

IEEE Int’l Conf on Computer Vision (ICCV), volume 1, pages

66–73, Dec. 5 2005. 2, 4

0 50 100 150
0

0.02

0.04

0.06

0.08

0.1

Iteration Number

D
is

ta
n
ce

 (
m

)

TableRealData Position Error

 

 

dirsac

ransac

starting error

20 40 60 80 100 120 140
0

1

2

3

4

5

Iteration Number

A
n
g
le

 (
d
e
g
)

TableRealData Orientation Error

 

 
dirsac

ransac

starting error

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Distance Error (m)

P
ro

b
a
b
ili

ty

TableRealData Position Error Probabilities

 

 

dirsac

ransac

starting error

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Orientation Error (deg)

P
ro

b
a
b
ili

ty

TableRealData Orientation Error Probabilities

 

 

dirsac

ransac

starting error

Figure 6. “TableRealData” results from the model displayed in

Figure 4. To highlight the performance of DIRSAC vs. RANSAC,

we are displaying the unconstrained dimensions only. Notice how

RANSAC rarely computes a solution which improves the error

in the unconstrained dimensions. In contrast, DIRSAC regularly

improves the solution along these unconstrained dimensions.

0 50 100 150
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Iteration Number

D
is

ta
n
ce

 (
m

)

FlatSlab Position Error

 

 

dirsac

ransac

starting error

0 50 100 150
0

0.5

1

1.5

2

2.5

3

Iteration Number

A
n
g
le

 (
d
e
g
)

FlatSlab Orientation Error

 

 

dirsac

ransac

starting error

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Distance Error (m)

P
ro

b
a
b
ili

ty

FlatSlab Position Error Probabilities

 

 

dirsac

ransac

starting error

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Orientation Error (deg)

P
ro

b
a
b
ili

ty

FlatSlab Orientation Error Probabilities

 

 

dirsac

ransac

starting error

Figure 7. “FlatSlab” results. Both RANSAC and DIRSAC find

good solutions, but clearly DIRSAC finds lower error solutions

much more consistently.

[6] M. A. Fischler and R. C. Bolles. Random sample consensus:

A paradigm for model fitting with applications to image anal-

ysis and automated cartography. Graphics and Image Pro-

cessing, pages 381–395, 1981. 1

[7] J.-M. Frahm and M. Pollefeys. Ransac for (quasi-)degenerate

data (qdegsac). In Proc. IEEE Computer Society Conf. Com-

puter Vision and Pattern Recognition, volume 1, pages 453–

460, June 17-22 2006. 2

[8] J. Matas and O. Chum. Randomized ransac with td,d test.

Image Vision Computing, 22(10):837–842, 2004. 2

[9] R. Raguram, J.-M. Frahm, and M. Pollefeys. A compara-

tive analysis of ransac techniques leading to adaptive real-time

random sample consensus. In Proceedings of the 10th Euro-

pean Conf on Computer Vision (ECCV): Part II, ECCV ’08,

pages 500–513, Berlin, Heidelberg, 2008. Springer-Verlag. 2


