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ABSTRACT

We describe a simple and robust algorithm for estimating 3D shape given a number of silhouette points obtained
from two or more viewpoints and a parametric model of the shape. Our algorithm minimizes (in the least
squares sense) the distances from the lines obtained by unprojecting the silhouette points to 3D to their closest
silhouette points on the 3D shape. The solution is found using an iterative approach. In each iteration, we
locally approximate the least squares problem with a degree-4 polynomial function. The approximate problem
is solved using a nonlinear conjugate gradient solver that takes advantage of its structure to perform exact and
global line searches. We tested our algorithm by applying it to reconstruct patient-specific femur shapes from
simulated biplanar X-ray images.
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1. INTRODUCTION

In bone-related Computer Aided Surgery applications, one is often interested in constructing a patient-specific
3D model of the bone of interest, which can be rigidly registered to the patient during the procedure and be
displayed to guide the surgeon. Such a model can be built from a Computed Tomography (CT) scan, but this is
a time-consuming process that exposes the patient to large amount of radiation. A cheaper and faster approach
is to use a number of X-ray images.

Reconstructing 3D bone models from X-ray images is a challenging problem because of limited amount of
information provided by the input. This paper describes a robust algorithm for a closely related problem of
reconstructing 3D shape from silhouette points extracted from 2D images and a parametric model of the shape.
Our method essentially searches for a shape defined by the parametric model and its pose that makes it as close
to tangent as possible to a set of lines obtained by unprojecting the input silhouette points from the input 2D
images to 3D. In contrast to1, 2 out approach does not require complete silhouette.

Like many other algorithms, our method is based on minimizing the distance between the unknown shape
and the lines defined by the input silhouette points in the least squares sense. In contrast to methods described
in,3, 4 our algorithm is based on silhouette points rather than apparent silhouettes. Apparent silhouettes tend
to be larger and more complex than silhouettes and typically give rise to more local extrema in the objective
function. We also use a different optimization method: a customized version of the conjugate gradient method.
We take advantage of the structure of the problem to make it perform global and exact line searches. Even
though this approach still does not qualify as a global optimization method, it is very effective at avoiding local
minima. The need for a global approach was recognized in,5 where genetic algorithm with intensity and contour
based scoring metric is used for optimization. The method of6 uses an approach based on simulated annealing
and improves upon earlier approach7 that minimizes likelihood energy obtained from edge potential field and a
prior energy term defined in terms of the statistical model using the gradient descent method.

The method of8 is also based on silhouette points, but it uses a different optimization method. Also, the
goal of that work is to segment bone contours from X-ray images: results of 3D shape reconstruction from X-ray
pairs are not reported.



2. PROBLEM STATEMENT

The input to our procedure consists of:

• a parametric shape model (base mesh and a small number of eigenshapes – Section 2.1)

• the initial pose (location and orientation in space – Section 2.2)

• a number of silhouette points of the unknown shape in a set of registered 2D images.

In our current implementation, the user specifies the initial pose interactively by rotating and translating the
average shape so that it is roughly aligned with the expected output. The alignment does not have to be accurate
- in our femur experiments described in Section 4 we sometimes used initial orientation about 45 degrees off the
output orientation, and the algorithm still is able to converge to the right solution.

The silhouette samples are also selected manually. In many cases, complex background makes it hard to
decide where the silhouette is. For examples discussed in Section 4 we simply avoided sampling these areas and
focused on the parts of silhouette that were clearly correct.

The output is an estimate of the shape parameters and the pose consistent with the images from which the
silhouette samples were obtained.

2.1 Parametric model of the shape

The parametric model of the shape used in this work consists of the base triangle mesh M and eigenshapes E1,
E2, . . . , EN . The base mesh and the eigenshapes can be obtained by fitting a template mesh (typically, of simple
and regular connectivity) to a family of shapes. Then, PCA analysis of the vertex coordinate vectors is applied to
the fitted template meshes to compute the average shape and describe their most significant deformation modes.
The base mesh represents the average shape in the family and the eigenshapes represent the most significant
allowable deformations of the base mesh. In this work, we focus on the space of femur shapes and use the
parametric model constructed using the method of.9

If the base mesh has n vertices v0, v1, . . . , vn−1 then the eigenshapes consist of n vectors: Ek =
(

ek
0 , e

k
1 , . . . , ek

n−1

)

for k ∈ {1, 2, . . . , N}. The shape corresponding to parameter vector ᾱ = [α1, α2, . . . , αN ], denoted by M(ᾱ), is

the triangle mesh obtained from M by changing the coordinates of its i-th vertex from vi to vi +
∑N

k=1 αkek
i

while keeping the connectivity fixed. Our procedure works by searching for a shape (in the N -dimensional affine
space of all meshes of the form M(ᾱ)) and its pose that lead to silhouettes matching the user-specified silhouette
points.

2.2 Pose

Our algorithm estimates both the shape parameters and the pose information. The pose is represented as a
rotation matrix R and a translation vector T . In what follows, if R is a 3 × 3 matrix and S is a 3D triangle
mesh, by R[S] we shall denote the result of applying the transformation represented by R to the mesh S, i.e.
the mesh obtained from S by applying the matrix R to each vertex. Similarly, by S +T , where T is a 3D vector,
we denote the mesh S translated by T .

Our algorithm computes a pose update for the mesh at each iteration. The pose update is a pair (R, T ),
where R ∈ SO(3) (SO(3) denotes the group of 3D rotation matrices) and T is a translation vector. Generally,
updating the pose of a mesh S boils down to substituting the current mesh S with the mesh R[S] + T and
applying the rotation matrix R to all component vectors of the eigenshapes (to make their orientation consistent
with that of the updates mesh).



Figure 1. Left: An example of image used to determine the approximate silhouettes (with anisotropic pixels). Right: The
initial shape and pose and shape and pose estimated by our algorithm. The lines were obtained from the silhouette points
selected from the input images. The dark cubes indicate the location of silhouette points on the current shape that are
closest to one of the lines.

3. OUR APPROACH

Our algorithm is based on least squares minimization of the distance between lines obtained by unprojecting the
silhouette samples into the three-dimensional space to the silhouette of the unknown shape. In what follows, by
L we denote the set of lines obtained from the silhouette samples. Each line l ∈ L projects to a silhouette point
in one of the input images. By el we denote the center of projection (X-ray source location) used to obtain that
image.

The goal is to minimize the objective function equal to the sum (over all l ∈ L) of the squared distance from
l to the silhouette of the mesh relative to el. The detailed description of the optimization method is given below.

3.1 Silhouettes

By a silhouette point of a surface S relative to a viewpoint e we mean any point p on S such that the intersection
of the ray starting at e and passing through p intersects S at exactly one point. The set of all such points will
be called e-silhouette of S. Exact computation of silhouette points can be computationally intensive. Therefore,
our procedure uses a simple approximation that works very well in practice.

We scan-convert all apparent silhouette edges, i.e. edges that separate a front facing triangle from a back
facing triangle relative to the viewpoint e. Let’s say that the initial color of every pixel is black and all edges
are drawn in white. The projection plane is selected so that all edges project to non-boundary pixels. Then, all
pixels in the connected component of the set of black pixels that contains the boundary pixels are colored grey.
Finally, we go over all edges in B and check if there is a gray neighbor for any pixel in the projection of the edge.
If there is one, we declare all points on the edge as silhouette points. We are going to denote the approximate
e-silhouette of a surface S by Silh(S, e). Note that it consists of edges of the surface S.

It would be easy to accelerate this procedure on a GPU, but our current implementation is entirely CPU-
based. An example of image used to compute the approximate silhouette is shown in Figure 1.

3.2 Objective function

The objective function F that we minimize in this paper represents the least squares line-silhouette distance:

F (R, T, ᾱ) =
∑

l∈L

dist2
(

l, Silh(R[M(ᾱ)] + T, el)
)

. (1)

Its domain is a Cartesian product SO(3)×R3 ×Rk. Note that the distance between sets C and D (in the above
equation, between a line and an approximate silhouette) is defined as the minimum distance between a point
c ∈ C and d ∈ D.

F is a complicated function that is costly to even evaluate for given arguments. Thus, we exploit its local
approximation whose reliable minimization is much easier.



3.3 Local approximation

Notice the right hand side of Equation (1) is well defined if R is any matrix, not necessary a rotation. The
tangent space T to SO(3) at the identity matrix I is the space of all anti-symmetric 3D matrices. This means
that small rotations can be approximated (with quadratic accuracy) with matrices of the type I + A where A is
an anti-symmetric matrix. The space of anti-symmetric matrices is isometric to R3 and therefore easy to deal
with. An example of a function that defines an isometry is

A(a, b, c) =





0 a b

−a 0 c

−b −c 0



 .

By replacing the SO(3) factor in the domain of F (Equation (1)) with the set of anti-symmetric matrices, we
essentially flatten its domain, making it the (k + 6)-dimensional Euclidean space.

The next goal is to limit the nonlinearity of F . Let S = M(ᾱ0) be the current approximation of the target
shape. For each line l ∈ L we find the point ql ∈ Silh(S, el) that is closest to l by exhaustive search over all edges
in Silh(S, el). We also find the vector fk

l corresponding to ql in the eigenshape Ek for k = 1, 2, . . . , N . The point
ql is on an edge of S, and S has the same connectivity as the average shape M . Thus, ql is a weighted average
of the i-th and j-th vertex of S for some i, j ∈ {0, 1, . . . , n− 1}. fk

l is obtained as the weighted average of ek
i and

ek
j with the same weights.

The simplified objective function F0 is defined by

F0(a, b, c, T, ᾱ) =
∑

l∈L

dist2
(

l, [I + A(a, b, c)](ql +

N
∑

k=1

αkfk
l ) + T

)

. (2)

Since the line l passes through el, the squared distance from a given point p to l can be computed from the
following formula

dist2(l, p) = |el − p|2 − ( ~elp · wl)
2,

where wl is a unit vector parallel to l. Note that the right hand side is a quadratic function of the coordinates of
p. Thus, each term under the summation on the right hand side of Equation (2) is a quadratic function of the
coordinates of the point

p = [I + A(a, b, c)](ql +
N

∑

k=1

αkfk
l ) + T.

The point p depends on the variables of F0 in a quadratic manner (evaluating the formula for p yields quadratic
terms of the form aαk, bαk and cαk). We conclude that F0 is a degree-4 polynomial of (N + 6) variables. In
particular, this highly simplifies, speeds up and increases the accuracy of the nonlinear conjugate gradient method
for minimization of F0. Recall that the conjugate gradient method works by performing a series of line searches,
that find minima of the objective function along lines. Because the function F0 is a degree-4 polynomial, line
searches reduce to minimization of degree-4 polynomials in one variable, or solving cubic equations. In particular,
this means that the line searches can easily be made global rather than local, which makes the method less likely
to get trapped in a local minimum.

3.4 Algorithm

The algorithm proceeds as follows. We initialize the current surface S to be the average shape transformed to
the user-specified initial pose (Section 2). Thus, if the pose update defined by the user is (R0, T0) then S is set
to R0[M ] + T0. We also apply R0 to all component vectors of all eigenshapes to make them consistent with the
current pose.

In a loop that is iterated until convergence, we compute the local approximation F0 of the objective function as
described in Section 3.3 and minimize it using the nonlinear conjugate gradient method. Let (a∗, b∗, c∗, T∗, ᾱ∗) be
the minimum, with ᾱ∗ = (α∗,i)

N
k=1. We substitute S with exp(A(a∗, b∗, c∗))[S(ᾱ∗)] + T∗, where S(ᾱ) is obtained

from S by translating the i-th vertex by
∑N

k=1 αkek
i (cf definition of M(ᾱ) in Section 2.1). We also apply the
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Figure 2. Estimate of the femur length assuming it is placed so that it is parallel to the projection plane; In order to
obtain the scaling factor s in Section 3.5.1, we use 2d tan(γ/2) as an approximation of the femur’s length, where γ is the
angular diameter of the femur.

rotation matrix exp(A(a∗, b∗, c∗)) to all component vectors of all eigenshapes to make them consistent with the
current pose.

The exponential map is a natural way to transform an antisymmetric matrix into a rotation matrix. This is
because the derivative of the exponential map at the identity matrix is the identity: exp(A) is a rotation matrix
very close to Id + A if the norm of A is small enough (the distance between the two is of the order of square of
the norm of A).

3.5 Heuristics to improve convergence

The plain version of the algorithm described in Section 3.4 occasionally fails to converge to the global maximum.
For the femur shapes, the most frequent reason for failure that we observed in our experiments was large length
difference between the average shape and the output shape. The algorithm is made robust with two simple
heuristics described below.

3.5.1 Approximate pre-scaling

Before executing the algorithm of Section 3.4, we apply an approximate scaling to the initial shape by changing
the first shape parameter. The goal is to make the size of the starting surface closer to the size of the target
surface. In most parametric shape models of the type used in this work (Section 2.1) the first eigenshape roughly
controls the size of the shape (e.g. length of the femur). Let Mα1

be the shape corresponding to shape parameter
vector (α1, 0, 0, . . . , 0). For the purpose of this discussion, we shall identify a shape with the 3n-dimensional vector
obtained by concatenating the coordinates of all vertices. In order to approximately scale the mesh Mα1

by a
factor of s, we alter its shape parameter to α′

1 such that the following inequality holds

Mα1
· Mα′

1
= sMα1

· Mα1

where · denotes the 3n-dimensional dot product. This equation states that the perpendicular projection of Mα′

1

onto Mα1
(in the 3n-dimensional space) is equal to sMα1

. Since Mα = M + αE1 and M and E1 are known, the
equation can easily be solved for α′

1 leading to the following formula

α′

1 = α1 + (s − 1)
(M + α1E1)

2

E1 · M + α1E
2
1

.

In order to make use of it, we need to have an estimate of the desired scaling factor s. To obtain s, we perform
a few iterations (3 were enough for examples discussed in Section 4) of the algorithm described in Section 3.4 to
put the current surface S into roughly correct pose. These iterations involve only the pose parameters. Then,
we compute the maximum angle γ between two rays passing through the approximate e-silhouette of S where e

is one of the viewpoints. Let γ′ be the maximum angle between rays originating from the viewpoint and passing



Figure 3. Four of the X-ray pairs used for evaluation.

through the silhouette points in the input image taken from viewpoint e. We use s = tan(γ′/2)
tan(γ/2) . This scaling

factor is based on an estimate of femur’s length assuming its perpendicular orientation to the projection plane
and that the area near the middle of the femur projects close to the center of the image. If the femur’s distance
to the projection plane is assumed to be fixed, its length is proportional to the tangent of the half of its angular
diameter (Figure 2). We consider γ and γ′ estimates of the angular diameter of the current shape and the target
shape (respectively). The user-selected silhouette points are used to estimate γ′. Note that this means that
the user needs to select a pair of silhouette samples that are close to maximum possible distance between two
silhouette points in the input image away.

The approximate scaling procedure is iterated until |s − 1| < 0.001 (it typically takes about 2 − 3 iterations
to make this condition true for a typical input).

Clearly, one can compute the estimate of s using a few (or even all) available viewpoints and average the
results. However, if a particular view is to be used, the angle γ′ must be close to the maximum angle defined by
a pair of silhouette samples for that view. Thus, the user needs to select two silhouette samples that are roughly
maximum possible distance away in the corresponding input image.

3.5.2 Gradual introduction of degrees of freedom

The second heuristic is to introduce the degrees of freedom associated with the shape parameters gradually.
The impact of this heuristic is much smaller than that of the previously described one but we found a few
synthetic examples in which it helps. First, a small number of iterations are done with just 6 degrees of freedom
corresponding to pose update related variables. The following few iterations use the pose variables and only one
shape parameter. We introduce a new shape parameter every fixed number of iterations (we found that adding
a degree of freedom every 3 iterations works well for femur model examples).

4. EXPERIMENTAL RESULTS

In order to validate our algorithm, we used 23 simulated X-ray pairs obtained from CT scans (four of the pairs
we used are shown in Figure 3). For each scan, the femur was segmented manually and the resulting 3D model
was used as the ground truth for evaluating the result. The femur shapes computed using our procedure were
aligned with the ground truth shape using the ICP method10 and the mean, mean square and maximum errors
between the two were measured. The average errors over all 23 cases as a function of the number of shape degrees
of freedom used (i.e. N) are shown in Figure 4. For N = 16, the average mean, mean square and maximum
errors were 0.74mm, 0.95mm and 4.52mm (respectively).



Figure 4. Average error of our algorithm for simulated X-ray pairs. Left: mean and mean square errors (circles and
diamonds, respectively); Right: maximum error.

For each input dataset, manual selection of the silhouette points and specification of the initial alignment took
a few minutes of user’s time (almost all of which was spent on specifying the silhouette samples - 57 per X-ray
image on average). The running time depends on the number of degrees of freedom and on a particular example
and is around 5 minutes (single thread on a 2.4 GHz Core 2 processor) for N = 16. Moving the silhouette
computation (Section 3.1) to the GPU could save about 60 percent of the running time.

A shortcoming of our method is that the objective function F defined by Equation (1) is discontinuous.
This is because the silhouette point set is not a continuous function of the pose (this is true about apparent
silhouettes too). This causes the algorithm to converge not to a well-defined point but rather to a more complex
limit trajectory, which usually appears to be periodic. In some cases, the limit trajectory depends on the initial
condition. The trajectories we observed are very small in diameter. We found estimates of the diameter by
measuring distances between vertex vectors of the shapes corresponding to points in the limit trajectories for the
same input dataset obtained using 3 runs with different starting pose. In all runs, we used 16 degrees of freedom
for the shape (N = 16). The average diameter (in the maximum, mean and mean square sense, respectively) of
the limit trajectories over all 23 input dataset was 0.42mm, 0.06mm and 0.08mm. The largest diameters for the
3 norms were observed for the same dataset and were 2.06mm, 0.33mm and 0.41mm (respectively). Curiously,
the algorithm’s performance for this particular dataset (i.e. the distance between the output and the ground
truth) was slightly better than average.

Making the objective function more regular by making silhouettes depend smoothly on the pose could improve
the convergence of the algorithm and may be an interesting topic for future work.
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