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Abstract 

 
A dense sensor network consisting of passive infrared 

motion detectors was developed and used to record 
human activity in hallways and rooms in a large campus 
building.  Algorithms were developed that: (a) 
automatically determine the topology of the network from 
the sensor data, so that manual mapping is not required, 
(b) automatically learn patterns of sensor readings in local 
spatial and temporal neighborhoods, and (c) use the 
distribution of local events over larger spatial and 
temporal scales to automatically discover patterns of 
underlying global activities.  The statistical distribution of 
the local events is analyzed using Probabilistic Latent 
Semantic Analysis (pLSA).  Preliminary results show that 
the method can identify “typical” and “anomalous” 
activities.   
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1 INTRODUCTION 

 
We address the problem of automatically learning and 

recognizing activity patterns from a dense sensor network 
of simple, low cost sensors.  We are interested in 
activities that involve a large number of people acting 
over a large spatial domain, and possibly over a long 
period of time.  We would like to be able to automatically 
identify “typical” and “anomalous” activities.  This has 
many important applications such as security in buildings.   

 
A typical approach in security applications is to install 

numerous cameras and have security guards monitor the 
video.  Even though cameras are relatively cheap, the cost 
of a security guard to monitor the video is quite 
expensive.  There has been much research on 
automatically detecting activities from video, but this 
technology is still in its infancy.  There has also been 
mounting concern over privacy issues in using video in 
public spaces.   

 
Most current research in activity recognition is limited 

to activities involving relatively few agents, in a limited 
area, and over a limited duration.  Most current research 
also requires significant human intervention for modeling 
and setup.  Many researchers use video to provide 

detailed information on the actions of a single person, 
such as what they are carrying, their gestures, etc.  While 
we do not rule out the use of video information, we would 
only use video to derive simple information such as a 
count of the number of people in the scene. 
 

To avoid privacy concerns and reduce cost, we have 
developed a dense sensor network composed of simple 
low cost sensors (passive infrared motion detectors) to 
monitor public spaces.  These sensors can only detect the 
presence of a person and cannot identify the person, thus 
alleviating privacy concerns.   

 
Other researchers have also used motion detectors (or 

similar sensors that are also low resolution and 
anonymous) to recognize activities.  Wilson and Atkeson 
[1] place sensors in a home and track the movements of 
an individual, then interpret the activity based on the 
locations visited.  Lymberopoulos et al [2] also recognize 
activities based on the order of locations that a person 
visits.  However, tracking individual people is not 
practical in a large building where many people will be 
present, because of the ambiguity involved.  Wu, et al at 
Intel Research [3], use RFID tags to detect which objects 
a person touches in the kitchen, then use a dynamic Bayes 
network to recognize activities. This approach requires a 
person to wear an RFID reader and extensive tagging of 
objects or people with RFID tags.  A system that was 
developed for a scenario similar to our own was that 
reported by Wren, et al [4].  They use a network of 
motion detectors mounted in the hallways of a building, to 
recognize activities such as a person going to use the 
elevator.  They require a person to provide both positive 
and negative training instances of the activity.   
 

In terms of representation, many approaches treat an 
activity as a temporal sequence of elementary events, 
which can be represented by a structure such as a hidden 
Markov model (HMM) [5].  We also use this approach, 
although we use a simpler fixed model, as described in 
Section 3. 
 

Our work differs from past work in two important 
ways:  First, we discover activities that involve a large 
number of people, rather than a single individual.  
Second, learning is almost completely unsupervised and 
there is no need for a person to label training instances of 
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activities.   We automatically learn patterns of sensor 
readings in local spatial and temporal neighborhoods.  We 
use the distribution of local events over larger spatial and 
temporal scales to automatically discover patterns of 
underlying global activities.  This can be used to 
determine if the observed activity is typical or anomalous 
compared to previous observations.   

2 EXPERIMENTAL DESIGN 

 
A sensor network consisting of 10 wireless motes and 

50 passive infrared (PIR) motion sensors was set up in 
Brown Hall, which is a large building containing offices, 
research labs, and classrooms.  We installed sensors on 
the ceiling along the hallway on the second floor, in the 
departmental office, conference room, in an atrium, and at 
the entrance of classrooms (Figure 1).   
 

 
 
Figure 1  Sensor network in Brown Hall.  Small dots 
are the PIR sensors; the larger dots are the motes.  
The dot labeled “0” is the network gateway. 
 

The sensors used in this project were the KUBE 
Electronics PIR Detector Module TR257-1.  These 
sensors are about 1 inch square, and cost approximately 
$30-40 each.  The sensors detect a moving heat source 
(such as a person walking by), and are similar to sensors 
that automatically turn on lights in a room.  The sensor is 
sensitive enough to detect a person is standing under it, 
and moving slightly.  Note that the sensor cannot 
distinguish between a single person and multiple people.  
When mounted on an 8 foot ceiling, the sensors have an 
effective range of about 12 feet.   

 
Sensors were placed rather arbitrarily.  We knew the 

approximate range of the sensors, so we spaced them 
using that range.  Placement was sometimes guided by 
where we could put them.  Sometimes we knew that a lot 

of traffic would occur in certain places, so we placed 
more sensors there.   
 

The mote used in this project was the Moteiv Tmote 
Sky.  This mote has an 8MHz microcontroller, 10kB of 
RAM, 48kB of Flash memory, and runs TinyOS.  Each 
mote costs about $80 in quantity.  It communicates using 
the 2.4GHz IEEE 802.15.4 (Zigbee) wireless standard.  
The motes were placed above the ceiling tiles, with wires 
running to the sensors.  The entire sensor network is 
unobtrusive, with most of the hardware placed out of sight 
above the ceiling. 

 
Five PIR sensors were connected to each mote, 

through a custom interface board.  We programmed the 
motes to sample the sensors once every second.  If any of 
the sensors have a detection, then a packet is transmitted 
to the base station, attached to a PC.  An application on 
the PC server records the detections in a mySQL 
database.  Data was collected continuously from 
September 2007 to June 2008 (i.e., one academic year), 
except for a few weeks in which the network was down 
for maintenance.   

 
One way to visualize the data is in the form of a two 

dimensional matrix H(t,s), where the columns are sensors 
and the rows are time intervals.  The elements of the 
matrix are 0 or 1, indicating whether a sensor is active at 
that time.  We actually used an interval of two seconds, 
since detections are only known to ±1 second.  If any 
detection occurs within that 2 second interval, it is 
represented as a hit in the matrix. 

 
Figure 2 shows an example of a sensor hit matrix H.  

Local movement patterns appear as structures in the 
matrix.  For example, a person walking down the hall 
causes consecutive hits in adjacent sensors, which appears 
as a diagonal streak in the data.   

 

  
Figure 2  Example of sensor data in the form of a two 
dimensional matrix. 
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Of course, the pattern would only take the form of a 

diagonal streak if the sensors along the hallway are 
numbered in consecutive order; if the sensors are 
numbered in a different order, then the pattern might take 
a different (but predictable) form. 
 

Figure 3 shows the counts for each sensor over a one 
week period, in the form of “heat map”.  Brighter colors 
indicate a larger number of counts.  The largest count (in 
the upper right) is from the sensor over the receptionist’s 
desk in the departmental office. 
 

 
Figure 3  Sensor counts over a one week period. 
 

3 ALGORITHM AND RESULTS 

3.1 Network Topology 

 
Our first step is to infer the network topology from the 

sensor data, similar to the approach of [4].  If two sensors 
are physically close, and people regularly move from one 
to the other, there should be a high correlation between 
the activations as a function of time.  We can measure this 
using the normalized cross correlation coefficient.  Let x 
be activation (0 or 1) of one sensor at time t, and y be the 
activation of another sensor at time t+t.  The normalized 
cross correlation score is  

 
yx

yx

yxCov


 ,

,   

where Cov(x, y) is the covariance of x and y.  The 
coefficient is equal to 1.0 if the two sensor readings are 
perfectly correlated, and -1.0 if they are oppositely 
correlated.  It is zero if they are uncorrelated.  This can be 
used to determine the neighbors of each sensor.   

 
Figure 4 shows strong correlations that were 

experimentally determined using the correlation 

coefficient.  This was determined from readings from a 
one week period.  The thicknesses of the lines between 
the pairs of sensors correspond to the values of the 
correlation coefficient between them (only large positive 
correlations are shown).  Correlations were measured for 
time offsets of t=1,2,..,6 seconds.  For each pair of 
sensors, the highest value among all these time offsets 
was used.   

 

  
Figure 4  Neighbors of sensors experimentally 
determined using correlation coefficient. 

 
Sensor pairs with correlation values above a threshold 

are considered to be neighbors of each other.  The 
threshold was empirically determined to yield 
neighborhood sizes in the range of 2-5 sensors.  In the 
figure above, the paths of the hallways can easily be seen.  
This matches the routes where people commonly move 
through the building.  However, sensors that are spatially 
close, but do not have a physical path between them, are 
not identified as neighbors. 

3.2 Local Activity Patterns 

 
The next step is to detect local, repeated activity 

patterns.  These are localized in space (in terms of the 
neighborhood of sensors) and time.  From the correlation 
data described in the previous section, each sensor has a 
neighborhood of size S (consisting of 2 to 5 sensors).  
Looking over a short time window (T=9), we first find all 
H(T,S) windows that have a local maximum in the 
number of counts – these are potentially “interesting” 
events.  As an example, for one such neighborhood, 
centered on sensor with identification number 50, over 
one week, there are 1656 such events.  Each event Xi is a 
9x4 pattern.  Figure 5 shows the neighborhood centered 
on sensor 50, and two candidate events extracted from the 
data. 
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Example:  Sensor 50 has 
neighborhood 50, 44, 51, 43

50 44 51 43

Xi+1

Xi

time  
Figure 5  Local patterns with high activity levels are 
extracted from the data, for each neighborhood. 
 

Next, a k-means algorithm was used to cluster similar 
events.  The normal k-means algorithm had to be 
modified to deal with the nature of the data.  First, the 
data points are not vectors, but two dimensional matrices 
of size TxS.  Second, when computing the distance 
between a data point and a cluster, the distance measure 
must allow for potential time shifts, caused by a slightly 
different starting point.  The distance measure between 
events Xi and Xj is given in the equation below.   
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We also re-centered the clusters in time after each 

iteration.  With these modifications, the k-means 
algorithm does not converge monotonically, in the sense 
that the sum of the point-to-cluster distances always 
decreases with each iteration.  However, the observed 
behavior of the algorithm was that the sum of distances 
decreased rapidly and then fluctuated slightly about a low 
value.  We terminated the algorithm after a fixed number 
of iterations (20). 
 

We used a value of k=7 for the desired number of 
clusters (chosen empirically).  We discarded clusters that 
had too few points assigned to them.  The result was that 
we found between 2 and 7 clusters for each neighborhood.   

 
The cluster results for neighborhood 50 are shown in 

Figure 6.  Looking at the meaning of these clusters, we 
can interpret C1 as a person walking to the left in the 
hallway.  C2 and C3 represent a person walking to the 
right (at slightly different speeds).  Preliminary tests show 
that the patterns with the highest counts are repeatable; 
i.e., very similar from one week to the next. 

640 449 395 137 35

C1 C2 C3 C4 C5

 
Figure 6  Cluster results for the neighborhood 
centered at sensor 50, with number of occurrences in 
each cluster. 
 

These clusters represent localized, repeated activity 
patterns.  We then identify the occurrences of these 
patterns in the entire data set, using cross-correlation.  
The entire data set is thus converted to a sequence of 
symbols, each of which represents the occurrence of a 
local pattern.  We can then analyze the distribution of 
symbols over time periods, and the dynamic sequences of 
symbols.  This is described in the next section. 

3.3 Analysis of Event Distribution 

 
Our approach for analyzing the distribution of local 

events over time was inspired by the method of 
probabilistic latent semantic analysis [6].  The pLSA 
method was originally developed for document analysis.  
It can discover a small number of latent or “hidden” 
topics in a large collection of documents.  A document is 
described using a word frequency vector, containing the 
frequency of each word wi in the document dj.  It uses an 
iterative expectation-maximization (EM) algorithm to 
discover a set of underlying topic vectors, or latent classes 
zk.  Given any new document, one can estimate the 
composition of the document in terms of its latent classes. 

 
In our application, “words” are the local activity 

patterns found by clustering.  There were 291 total unique 
symbols, each representing a particular pattern at a 
particular sensor neighborhood.  The equivalent of 
“documents” is sensor data recorded over a specific time 
interval (such as hours or days).  We performed a pLSA 
analysis of sensor data from 17 sensors along the hallway.  
Data from one month was analyzed.   

 
Data from a one-month period (March 1-30) was 

divided into days.  Each “document” is a day, so there are 
30 documents.  We specified that there were 8 latent 
classes.  Looking at the results of the analysis, the 
composition of “topics” for each document appears to be 
dependent on the day.  In particular, latent class 2 seems 
to correlate with “weekday”, and latent class 4 seems to 
correlate with “weekend” or “holiday”.  Figure 8 shows 
the probability (vertical) of a latent class for each day of 
the month (horizontal axis).  The plot shows that class 2 is 
high during weekdays (M-F) and class 4 is low on 
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Saturdays and Sundays (Mar 1-2, 8-9, 15-16, 22-23).  
Interestingly, March 10-14 was spring break, and this 
period (circled) showed characteristics of both weekdays 
(class 2) and also weekends (class 4). 

 
To get some insight into the composition of the latent 

classes, we can look at the probability that a symbol (or 
activity pattern) occurs within each latent class.  There are 
a large number (291) of these symbols, so we only look 
the ones with the highest probability.   

 
For class 2 (“weekday”), two of the most common 

patterns are centered on sensor 72.  These patterns are 
shown in Figure 7.  Both appear to show a person 
loitering; one for a short time and the other for a longer 
time.  Since these sensors are over the janitor’s closet and 
outside the restroom, this possibly could indicate the 
janitor mopping. 

 
Figure 7  The highest probability patterns comprising 
latent class 2. 
 

We can also analyze how the days (“documents”) 
differ from each other, in terms of the latent classes.  
Figure 9 is a plot of each day, according to its proportion 
of latent class 2 (horizontal axis) and latent class 4 
(vertical axis).  Note that weekdays cluster in the upper 
right.  Sunday March 30 is an anomaly – it has an 
unusually large value for latent class 4, and does not 
group with the other Saturdays and Sundays.  We looked 
at the raw data and it appears that a large meeting or 
gathering occurred in the atrium that afternoon 

4 CONCLUSIONS AND FUTURE WORK 

 
We have developed methods to represent and 

recognize group activities from dense sensor network 
data.  Advantages of the method are that very little a 
priori information is used – learning is almost completely 
unsupervised.  First, sensor data is used to infer topology 
of the network.   Next, a simple k-means clustering 
algorithm discovers repetitive patterns, which are 
localized in space and time.  More robust clustering 
algorithms, that attempt to choose better initial cluster 
locations, or escape local maxima, could be investigated. 

 

The data is represented by discrete symbols, 
corresponding to the discovered local patterns.  The 
statistical distribution of the symbols is analyzed using 
Probabilistic Latent Semantic Analysis (pLSA).  
Preliminary results show that the method can identify 
“typical” and “anomalous” activities.  Possible 
applications of this method include building security, and 
prediction of human activity for the purpose of improving 
building energy efficiency.   

 
Currently, our simple PIR sensors limit the types of 

activities that can be recognized.  For example, the 
sensors are incapable of identifying or tracking individual 
people, or accurately knowing the number of people in a 
given area.  We are looking at adding other types of 
sensors, including sound level, light intensity, and sonar, 
which may provide additional information. 
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Figure 8  Probability of latent classes 2 and 4, for the analysis where a “document” is one day. 
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Figure 9  Plot of each day in terms of probabilities for latent classes 2 and 4 
 


