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Abstract

Object pose may be determined from a set of 2D im-
age points and corresponding 3D model points, given
the camera’s intrinsic parameters. In this paper, two
new exterior orientation algorithms are proposed and
then compared against the Efficient PnP Method and
Orthogonal Iteration Algorithm. As an alternative to
the homogeneous transformation, both algorithms uti-
lize the 3-simplex as a pose parameterization. One al-
gorithm uses a semidefinite program and the other a
Gauss-Newton algorithm.

1. Introduction

By applying computer vision techniques, object pose
may be determined from a set of 2D image points and
corresponding 3D model points, given the camera’s in-
trinsic parameters. In general, the problem has been
given the name “exterior orientation”, and for an arbi-
trary number of points it is called “perspective-n-point”
or PnP. Difficulty arises due to image point noise, non-
linearity of perspective projection, and the constraints
placed on the elements of the 6-DOF pose.

There is a long history of study in this area and many
algorithms have been proposed. Linear algorithms can
be very fast but are typically not that accurate due to
relaxation of pose constraints. Iterative algorithms con-
strain the pose directly and are usually very accurate,
but require a reasonably good initial guess for fast and
proper convergence to the global minima. A review and
comparison of existing exterior orientation algorithms
can be found in the papers [9], [2], and [1].

Recently, Moreno-Noguer et al, [8], proposed an
efficient PnP algorithm (EPnP) that relies on the 3-
simplex and a linear combination of multiple eigenvec-
tors. Results showed that the eigenvector combination
can improve pose accuracy. The scale factors within the
eigenvector combination are computed by a lineariza-
tion method. Additionally, projection error is not con-

sidered when calculating the scale factors which can
lead to inaccuracies.

In this paper, two new exterior orientation algorithms
are proposed and then compared against the EPnP and
classic Orthogonal Iteration Algorithm of [7]. Due to
space limitations, some details are omitted but a more
complete exposition can be found in [10].

2. Linear 3-Simplex

The n-simplex is an n-dimensional analogue of the
triangle, and has n+1 vertices; e.g. the 3-simplex is
a tetrahedron with four vertices. Barycentric coordi-
nates, α, describe the location of points with respect
to the simplex vertices. Suppose we want to describe
the location of 3D points on a rigid body, referred to as
model points. These points are assumed to be known
in the local reference frame attached to the rigid body,
called the model frame. The four vertices of the sim-
plex, CP j

s , j = 1, . . . , 4, are chosen. Then, the ith
model point in the model frame, CP i

m, may be writ-
ten as MP i

m =
∑4

j=1 αji
MP j

s , with the constraint that
the sum of each barycentric coordinate set,

∑4
j=1 αji,

equals +1. In this context, the 3-simplex may be con-
sidered a generalization of the homogeneous transfor-
mation.

The utility of the simplex in an exterior orienta-
tion algorithm is that the relationship between vertices,
points, and barycentric coordinates is rotation and trans-
lation invariant. Thus, if C

MH is the homogeneous trans-
formation from model to camera coordinates,[

CP ∗
m

1

]
= C

MH

[
MP ∗

m

1

]
= C

MH

[
MP ∗

s

1

]
α =

[
CP ∗

s

1

]
α

(1)
In other words, the same set of barycentric coordinates
still describes the relationship between simplex vertices
and points even when expressed in a different reference
frame.

Suppose an image of an object is available and we
wish to recover the pose of the object with respect to the



camera. Given a postulated pose, the 3D model points
expressed in the camera frame can be projected to spe-
cific points, ui and vi, on the image plane, if the cam-
era’s intrinsic parameters, fu, fv , u0, and v0 are known.
The image space error is the difference between the
measured image points and the projected model points
on the image plane. The image space error equations
can be rearranged into a form which is linear in the
model points expressed in the camera frame,[

ei
u

ei
v

]
=
[
fu 0 (u0 − ui)
0 fv (v0 − vi)

]
CP i

m . (2)

Since the true projection results in zero error, the null
space of this linear relationship consists of all points
in the camera frame that could have created the image
points. An alternative error metric, object space error,
proposed by [7] measures the error in 3D camera space.
Similarly, the object space error equations can be rear-
ranged into a linear form,ei

x

ei
y

ei
z

 =

(f i
11 − 1) f i

12 f i
13

f i
21 (f i

22 − 1) f i
23

f i
31 f i

32 (f i
33 − 1)

 CP i
m ,

(3)
where fi are elements of a projection matrix. The ex-
pression for model points in terms of the simplex ver-
tices and barycentric coordinates are substituted into
the projection error equations above. Notice that the
equations are linear in the simplex vertices and may
therefore be written in matrix form. Let C~Ps equal the
vector of simplex vertices in the camera frame so that[
ei
u ei

v

]T = Mi
C~Ps or

[
ei
x ei

y ei
z

]T
= Mi

C~Ps.
The error equations for the entire point set, 1, . . . , n,

are used to construct a large matrix referred to as
the “measurement matrix”, M =

[
M1 . . . Mn

]T
,

which is of size 2n×12 or 3n×12 in either image space
or object space. The null space of the measurement ma-
trix, V =

{
C~Ps ∈ R12 |M C~Ps = 0

}
, is a vector of

simplex vertices that result in zero projection error.
Regardless of which error space is used, a basis for

the measurement matrix null space may be computed by
eigenvalue decomposition of MTM , where vi are the
eigenvectors and λi are the positive real eigenvalues. If
noise is present, there will be no strictly zero eigenvalue
and the projection error of each basis vector equals

vT
i M

TM vi = ‖Mvi‖2 = λi‖vi‖ . (4)

In this section, we are only interested in the eigenvector,
v1, with the smallest eigenvalue, λ1, which is reshaped
back into 3 × 4 matrix form, v1 → CP̃ ∗

s . A nonzero
scaling exists because the null space is a vector space,
and vector spaces are closed under scalar multiplication

and vector addition. In this context, the final scale fac-
tor, βF , must be determined in order to estimate model
points in the camera frame that are approximately the
same size as the points in the model frame.

Fortunately, the scale factor may be easily computed,
in a least-squares sense, from the sum of squared error
about the model point centroids. The scale factor is the
square root of the distance ratio. After the scale factor
is recovered and model points in the camera frame are
estimated by CP ∗

m = βF
CP̃ ∗

s α, the “absolute orienta-
tion” concept of [4] or [5] is applied to find the relative
transformation between the point sets, C

MH . This ap-
proach forces the final rotation to be special orthogonal
(SO3).

By using only one eigenvector, pose may be deter-
mined non-iteratively by relaxing size and shape con-
straints of the simplex within eigenvalue decomposi-
tion. The linear 3-simplex algorithm can be very fast
and also very accurate if image noise is low and many
points are available. The scale factor applied to one
eigenvector only corrects size but not shape. Correc-
tion of shape from multiple eigenvectors is the focus of
the next section.

3. 3-Simplex-SDP

The algorithm presented in this section is a tech-
nique that produces a more accurate result from the
same framework, which uses multiple eigenvectors and
a polynomial semidefinite program (SDP). However, it
is iterative and inevitably slower than the linear method.

Recall from the last section that only the eigenvector
of MTM with the smallest eigenvalue was of interest,
and in a noisy system there will be no perfectly zero
eigenvalue. However, with noise, all of the eigenvectors
provide some information in decreasing order of signif-
icance as the size of the eigenvalue increases. If the first
four eigenvectors, va, . . . , vd, are used in a linear com-
bination,

(βa va + βb vb + βc vc + βd vd)→ CP̃ ∗
s , (5)

four scale factors, βa, . . . , βd, are required.
From the eigenvector combination, model points in

camera frame are estimated by CP ∗
m = βF

CP̃ ∗
s α,

and then the absolute orientation concept is applied to
find the relative transformation. Projection error of the
eigenvector combination is given by

E = ‖M(βa va + βb vb + βc vc + βd vd)‖2

= β2
aλa‖va‖+ β2

bλb‖vb‖+ β2
cλc‖vc‖+ β2

dλd‖vd‖.
(6)
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As suggested by [8], the betas are calculated from
non-linear rotation and translation invariant shape con-
straints that could not be imposed during eigenvalue de-
composition. Euclidean distance between vertex pairs is
a logical choice, and a set of four vectices has six pos-
sible combinations. In a noiseless system, distances in
the model and camera frames should be equal,∥∥CP i

s(β)− CP j
s (β)

∥∥2
=
∥∥MP i

s − MP j
s

∥∥2
. (7)

The dot product of a vertex triplet is another rotation
and translation invariant quadratic constraint, and a set
of four vectices has twelve possible combinations. In a
noiseless system, the direction cosine that the dot prod-
uct represents should be equal in the camera and model
frames,(

CP i
s(β)− CP k

s (β)
)
·
(

CP j
s (β)− CP k

s (β)
)

=
(

MP i
s − MP k

s

)
·
(

MP j
s − MP k

s

)
.

(8)

However, with noise present, a technique is needed to
minimize shape error by comparing distances and dot
products in both frames.

In [8] a linearization method was used to calculate
the βs which leads to a suboptimal solution. In addi-
tion, there was no consideration for project error result-
ing from the vector combination. In what follows, we
present a globally convergent algorithm that balances
shape and projection error without approximation. In
particular, we see to find β to minimize the following
error function

E(β) =
18∑

l=1

(
Cdl(β)− Mdl

)2
+ w

[(
λb

λa

)
β2

b +
(
λc

λa

)
β2

c +
(
λd

λa

)
β2

d

]
,

(9)

where the Cdl and Mdl define the polynomial shape
constraints and w is a weight that helps restrict the
amount of allowable projection error that results from
improving shape. As w increases, the strength of the
projection error penalty grows. If excessively large, βa

will always be the only nonzero scale factor found by
the SDP, defeating the purpose of the minimization. If
excessively small, the shape error is minimized with es-
sentially no projection error penalty.

Note that E(β) is a quartic multivariate polyno-
mial and additionally a sum of squares. The work of
Lasserre, [6], shows how minimizing a polynomial that
is a sum-of-squares can be transformed into a convex
linear matrix inequality (LMI) problem and then effi-
ciently solved in a semidefinite program (SDP). Hence,

the name “3-Simplex-SDP” that was given to the algo-
rithm.

SDP is a broad generalization of linear programming
(LP), to the case of symmetric matrices. A linear ob-
jective function is optimized over linear equality con-
straints with a semidefinite matrix condition. The LMI
minimization problem is written in standard form as

min
X

E = PTX , such thatM ≥ 0 , (10)

whereE is the objective function andM is the semidef-
inite matrix of the linear inequality constraint. The key
feature of SDPs is their convexity, since the feasible set
defined by the constraints is convex. In this context, the
SDP is used to solve convex LMI relaxations of multi-
variate real-valued polynomials.

In this algorithm, the vector P contains the coeffi-
cients of the polynomial E(β), X is the optimization
variable that encodes β, and M is the block diagonal
semidefinite matrix constructed from three smaller ma-
trices,M0,M1,M2, which are semidefinite themselves.
The constraints of M0 force the magnitudes of the scale
factors into the correct order, β2

a ≥ β2
b ≥ β2

c ≥ β2
d ,

which is also indirectly enforced through the projection
error penalty. M1 and M2 are both “moment” (or co-
variance) matrices that are constructed from multiplica-
tion of monomial vectors from the sum-of-squares de-
composition. Unfortunately, the details are too lengthy
to include here but can be found in [10] and [6].

After the SDP terminates, the βs are recovered from
the optimal vector X . Because the sum-of-squares de-
composition is not unique, a (trivial) sign ambiguity ex-
ists that places the model points in front or behind the
camera.

In Matlab, the SeDuMi package, [11], is used to
solve the sum-of-squares problem as a LMI. YALMIP,
SOSTOOLS, and GloptiPoly are interfaces that can
convert the problem into a form that is compatible with
SeDuMi.

4. 3-Simplex-GNA

In this section, global convergence is compromised
for fast runtime in a new algorithm that also utilizes
the 3-simplex parameterization and existing framework.
The algorithm requires an initial guess that could come
from numerous sources, including the linear 3-Simplex
algorithm, the 3-Simplex-SDP, or even a recursive esti-
mator in a tracking situation such as augmented reality.

The measurement matrix can actually be decom-
posed into a 12×12 upper triangular matrix. From SVD
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we obtain

MTM = (V SUT )(USV T ) = (V S)(SV )T = M̂T M̂ .
(11)

This is a very significant reduction if the number of
points is large. QR decomposition is perhaps a quicker
way to compute the reduced measurement matrix, M̂ .
It can be shown, [3], that minimizing a residual with the
reduced measurement matrix is the same as minimizing
a residual with the full size matrix,

min
C~Ps

‖M̂ C~Ps‖2 = min
C~Ps

‖M C~Ps‖2 . (12)

Sub-optimality of the linear 3-simplex algorithm
might be attributed in part to the relaxation of size and
shape constraints on the simplex vertices. Specifically,
the simplex vertices are given 12-DOF even though they
really only have six. For example, distances between all
vertex pairs should be the same in the model and camera
frames. Six constraints are placed on twelve parameters
leaving only 6-DOF.

Fortunately, it is easy to enforce these nonlinear con-
straints in an iterative algorithm by parameterizing the
simplex. Instead of choosing an arbitrary simplex, it is
logical to choose a specific shape, such as a unit length
right-handed orthogonal triad. e.g. MP ∗

s =
[
I3 0

]
.

One method of constructing such a triad is by decom-
posing the model point set with SVD. The triad origin
is placed at the centroid, Mts = MP̄m and the legs are
made to point in the principle directions, MX̂s = v1,
MŶs = v2, MẐs = ±v3, such that det(R) = +1.
If chosen this way, another reference frame, {S}, has
been effectively created. More analysis is needed to de-
termine if this is the optimal selection of the simplex.

If a unit length orthogonal triad is chosen, the fi-
nal pose solution may be quickly computed by C

MH =
C
SH

S
MH , where M

S H is equivalent to the chosen sim-
plex and C

SH is equivalent to the unknown simplex.
Four points are required to define an orthogonal triad

which can move freely in space. One point defines the
position and the other three define orthogonal direction
vectors along the legs. The rotation and translation of
the homogeneous transform above can be used to con-
struct an orthogonal triad,

MP ∗
s =

[
MX̂s + Mts

MŶs + Mts
MẐs + Mts

Mts
]
.

(13)
Euler angles can be used to parameterize the
rotational components of the unknown traid,
R(α, β, γ) =

[
CX̂s

CŶs
CẐs

]
, and thus, a six

element vector will parameterize the entire triad,
Θ =

[
α β γ tx ty tz

]T
.

A standard GNA may be used to minimize projection
error of f(Θ) = ‖M̂ C~Ps(Θ)‖2 and will have good con-

vergence properties if the initial guess is in the neigh-
borhood of the global minima.

By using the reduced measurement matrix, the Ja-
cobian computed each iteration will always be of size
12 × 6, no matter how many points are in the full
set. Thus, a significant time reduction occurs for many
points over a few iterations.

5. Results

Simulations are used to compare exterior orientation
algorithm performance. Metrics include position and
orientation error, number of outliers, and runtime. An
800 pixel focal length is used to project ten 3D points
onto the image plane, 1024 × 768, and then Gaussian
noise with ten pixel standard deviation is added to the
image points.

In each trial, a new point cloud is randomly gener-
ated to lie approximately 5’ in front of the camera with
1’ spread. The results of 1000 iterations are displayed
in the form of a box plot. Instead of plotting the loca-
tion of outliers, the total number is placed above the top
whisker (non-standard).

In the 3-Simplex-SDP section, only the four eigen-
vector combination is discussed, but of course, two and
three vector combinations are possible too. Figure 1
shows the pose error versus number of eigenvectors.
These results show that pose error decreases with the
number of eigenvectors used and, perhaps more impor-
tantly, the four eigenvector combination is consistently
better. It is desirable to use additional eigenvectors
within the SDP, but there is a performance/complexity
trade-off, and it is not recommended to use more than
four eigenvectors.

Figure 1. Pose Error: Eigenvector Combi-
nations

Figure 2 compares the 3-Simplex-SDP (four eigen-
vector) to a modified EPnP method. The modification
to the EPnP of [?] is the use of a GNA to further refine
the shape fit, although it still does not consider projec-
tion error. The figure shows that the pose error of the
3-Simplex-SDP (four eigenvector) is significantly less
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than the EPnP method. The figure also shows, by the
relative number of outliers, that the convergence of the
3-Simplex-SDP is much better than the EPnP method.
However, the performance increase comes at the ex-
pense of additional algorithm complexity when con-
verted to a sum-of-squares, but in many situations ac-
curacy is more important than runtime.

Figure 2. Group A: Pose Error

Figure 3 shows that the pose error and convergence
of the 3-Simplex-GNA and Orthogonal Iteration Algo-
rithm (OIA) are equivalent. However, Figure 4 shows
that the runtime of the 3-Simplex-GNA is much better
than the OIA. The data reduction to M̂ and asymptotic
efficiency of Gauss-Newton result in a very fast algo-
rithm - possibly a lower bound on runtime.

Figure 3. Group B: Pose Error

Figure 4. Group B: Runtime

6. Conclusions

Two new exterior orientation algorithms were intro-
duced and compared against existing algorithms. The
3-Simplex-SDP can be useful in situations when a good
initial guess is unavailable. It is globally convergent and
more accurate than the EPnP method. However, the al-
gorithm is not particularly fast, although a special im-
plementation of the SDP solver may help improve run-
time. The 3-Simplex-GNA is very fast, but it requires
a reasonably good initial guess and is not globally con-
vergent.
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