
Proc. of 10th International Conference on Information Fusion, Quebec City, QC, Canada, 2007, Jul. 9-12. 

Copyright 2006 Lockheed Martin Corporation and Colorado School of Mines, All Rights Reserved. 1

Recognizing Wide-Area and Process-Type Activities 
 

Raymond D. Rimey 
Radical Innovation Technology Center 

Lockheed Martin IS&S 
Denver, Colorado, USA 

raymond.d.rimey@lmco.com 

William Hoff 
Engineering Division 

Colorado School of Mines 
Golden, Colorado, USA 

whoff@mines.edu 

Jae Young Lee 
Dept. of Mathematical and Computer Sciences 

Colorado School of Mines 
Golden, Colorado, USA 

jaelee@mines.edu 
 
 

 
Abstract – New methods are presented to model, visualize 
and automatically recognize wide-area activities, which 
essentially are activities that span large areas (such as a 
facility or urban neighborhood) and that usually span long 
time intervals (such as hours and weeks). We introduce the 
no-go topology method and the chokepoint-observation 
interaction method, and then show how new algorithms can 
be built on them to recognize a category of wide-area 
activity, called process-type activities. Experimental results 
are presented for recognizing a manufacturing process 
observed using persistent GMTI sensor data. Then we 
present experimental results illustrating how an interesting 
activity can be detected as a deviation from a learned wide-
area normalcy model, and how new wide-area activity 
patterns can be discovered using simple visualizations of the 
results. 

One objective of this paper is to demonstrate that it is 
theoretically possible to recognize wide-area and process-
type activities in built-up environments using GMTI data. 
The results presented here use somewhat ideal sensor data 
(small positional error ellipses, continuous GMTI 
observations, repetitive activities) and our approach is to 
move toward realistic parameters in operational situations 
(larger error ellipses, fewer observations, figuring out how 
to exploit additional kinds of activities). 
 
Keywords: Activity recognition, Built-up area, GMTI, 
Motion pattern analysis, Persistent surveillance, Process-
type activity, Urban operations, Wide-area activity. 

1. Introduction 
Recognizing activities using various kinds of sensor 

observations is a problem of increasing interest to the 
military and the intelligence community. Intelligence 
analysis is expanding from looking mostly at isolated 
snapshots in time to looking at things that happen 
continuously over time. In the past, many intelligence tasks 
involved determining “what is where”, detecting a relatively 
isolated object within a relatively large spatial area. Some 
tasks have involved detecting a single large-scale event, for 
example, the vehicles have begun an attack, or the facility 
has initiated a test. Often such events are inferred by the 
analyst from one or two snapshots in time. Sometimes 
sensors are used to continuously track vehicles over time, 

but typically this provides only a real-time “what is where” 
answer. More sophisticated time-based analysis was 
theoretically possible, but historically there was not a strong 
driving need for it. 

Many of the new problems faced by intelligence 
analysts today involve time-based patterns and, in particular, 
activities. The area of operations today is likely to be an 
urban environment, such as a city or town, or other built-up 
environments, such as a multi-building facility. Typically a 
large number of people and vehicles inhabit these areas. 
There are many vehicles that can be detected, they are not 
isolated, and they all look somewhat similar. Instead of 
detecting a relatively isolated vehicle, the problem involves 
detecting an activity that is mixed in with many other 
activities within the same space-time volume. The activity 
involves the movement and interaction of people, vehicles, 
equipment and materials. In crude terms the problem is to 
determine “what are they doing” instead of “what is where”. 
For example, a tactically-oriented analyst may need to 
distinguish the movement pattern around an insurgent 
safehouse from the movement pattern around a laundry 
service, and a strategically-oriented analyst might detect 
preparations leading up to a test from the associated activity 
movement patterns within a facility. 

This paper addresses wide-area activities, which 
means an activity that spans a relatively large area, such as 
an urban neighborhood or a large facility. Wide-area 
activities typically involve a relatively large number of 
agents (vehicles or people), for example tens of vehicles. 
And the activity typically requires a large amount of time to 
perform, partly because all the agents need time to traverse 
the large area. This is admittedly a loose definition for a 
wide-area activity, however it encompasses many problems 
of interest to the military, problems which have also not 
been addressed to date. 

Recognizing activities requires observations over time. 
The recognition problem can be framed using probabilistic 
models of activities and evidence. Recognition performance 
is a function of the discrimination power of the set of 
observational evidence relative to the structure of a specific 
activity to be recognized. Observational evidence will 
generally come from multiple sources, meaning multiple 
types and instances of sensors. Continuous motion tracking 
of all moving agents and objects is the best possible type of 
observation data for automatically recognizing time-based 
movement patterns, but it is rarely available in built-up 
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areas. Less frequent (or lower quality, or lower information) 
observations are more realistic but in fact can be sufficient 
in some cases for good recognition performance. 

Happily, sensors are proliferating. The term persistent 
surveillance refers to the ability, of a single sensor system or 
a combination of them, to observe an area of interest 
continuously. A persistent surveillance sensor system 
provides the type of observation data needed to recognize 
activities. Persistent surveillance capabilities currently exist 
(though they are not yet common) and will become 
increasingly available over time. Examples utilize GMTI, 
UAV video, ground-based sensor networks, frequent image 
collections, and AIS ship tracks. Sensors also include the 
soldier-as-sensor concept, for example the set of 
observations made by all patrols in an urban neighborhood 
over the last month. 

Urban and other kinds of built-up environments 
provide challenges to persistent surveillance sensor systems, 
often resulting in low quality observations. For example, 
multi-path reflections effect the quality of GMTI, occlusions 
effect all sensors, and the density of moving agents makes it 
difficult to track an individual. Urban and built-up 
environments contain many activities that all overlap in 
space and time, which presents an additional challenge. 
Activity patterns of interest must be detected within massive 
clutter, where the clutter consists of other activities being 
performed by other vehicles in the same space-time volume 
as the activity of interest. 

This paper makes the following contributions: 
• A new category of wide-area activity is identified, 

process type activities, which involve structured 
repetitive material transfer movements. Many problems 
of interest to the military and intelligence community 
include processes. 

• The no-go topology method is introduced for 
interpreting (constraining) noisy position observations 
(e.g., GMTI) in large built-up areas. 

• The chokepoint-observation interaction method is 
introduced for detecting events from noisy position 
observations near a small local area. 

• Methods are introduced for estimating the parameters 
of a process-type activity model and for identifying the 
most likely pre-existing activity model for an observed 
dataset. We demonstrate that wide-area activities can 
theoretically be identified in built-up environments 
using GMTI data. 

• Experimental results show how much positional error 
can be tolerated in GMTI observations while still 
obtaining good discrimination of activities. 

• A combination of clustering methods and Markov 
models are used to represent normal patterns of activity 
in a wide area. Experimental results illustrate how an 
interesting activity can be detected as a deviation from 
the normalcy model, and how new activity patterns can 
be discovered using simple visualizations of the results. 

This paper is organized as follows. Section 2 
summarizes related work. Section 3 introduces the no-go 
topology method. Section 4 introduces the chokepoint-
observation interaction method. Section 5 introduces our 
model for a process-type activity, associated estimation and 
classification methods, and experimental results. Section 6 
presents our work on wide-area normalcy deviations and 
visual pattern analysis. Section 7 summarizes the paper. 

2. Problem Dimensions and Related 
Work 

An activity involves multiple agents, manipulating 
resources, interacting with each other, interacting with the 
world, and working over time to achieve an objective. 
Following are some ways to characterize the space of all 
activity types. 

The number of agents (people or vehicles) performing 
the activity: Most existing work (video) addresses 2-5 
agents. A small amount of work (GMTI, instrumentation for 
urban planning) involves 1000's of vehicles treated as flows 
or statistics. Our work addresses many 10's of vehicles. 

The extent of the area where the activity is performed: 
Some familiar examples of the spatial extent are a room, a 
street intersection, a sports field, a city block, a facility, a 
city neighborhood, a city, a county. Most existing work 
(video) addresses extents as big as a street intersection. 
Most existing GMTI work addresses convoys moving 
across road networks in a country-sized area. Transportation 
analysis involves country-sized areas that span airplane, 
shipping, train or road networks. Our work addresses 
facility-sized and neighborhood-sized spatial extents. 

The duration of the activity: Some example durations 
are 1 minute, 5 minutes, 20 minutes, 2 hours, 1 day, 5 days, 
weeks, months. Most existing work involves activity 
durations of a few minutes. Our work addresses activity 
durations of about 1 day. 

The regularity of the activity: The range of regularity 
includes: once, sporadically, regularly, continuously. Most 
existing work involves observing an activity once. Our work 
addresses continually repeated activity. 

The structural complexity of the activity: There are 
many kinds of structure. One way to describe structure is via 
“threading”, which spans from no-thread (a point event), a 
single thread (a single sequence), multiple threads (parallel 
and branching), and more complex structure. Another way 
to characterize structure is the number of agent-object 
interactions, the number of agent-agent interactions, and the 
number of agent-area interactions. Our work addresses 
multiple parallel threads, large numbers of agent-object 
interactions, small numbers of agent-agent interactions, and 
large numbers of agent-area interactions. 

Whether the core signature of the activity occurs in the 
geospatial, temporal or interaction domain: This does not 
apply to all activities, however some activities are strongly 
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defined or identified by a core geospatial, temporal or 
interaction pattern. 

Whether the activity is embedded within clutter 
(meaning other activities occurring in the same space-time 
volume) and the amount of clutter: Most existing work 
(video) involves little or no clutter. Our work addresses 
activity embedded in significant clutter. 

The degree to which details of the activity depend on 
the contextual environment. 

Whether the activity is of interest to the military: Most 
existing work on recognizing activities uses video and 
focuses on activities of near-term interest for commercial 
applications. Military needs are sometimes distinct. Our 
work addresses two new activity categories of great 
relevance primarily to the military: wide-area activities and 
process-type activities. 

Most existing work on recognizing activities has 
involved video and addresses the opposite from wide-area 
activities: small areas, few agents, short times, and lower-
level activities. Following are some exceptions of note. 

A large urban traffic network is characterized using 
several metrics calculated from a weighted transition matrix 
in [3]. Similar metrics were applied in [2] to the simulated 
movement of 1.6 million individuals in Portland, OR. The 
simulator, designed for urban traffic analysis professionals, 
uses the actual transportation network in Portland, 
individuals modeled using census and DMV records, and 
common daily (single person) activities. Using GPS tracks 
of individuals in another city, [9] learned a hierarchical 
Markov model for transportation routines and could detect 
deviations from the routines. 

Anomalous ship behavior was detecting from fused 
tracks (AIS ship transponders, radar detections, video) using 
rule-based and simple pattern recognition methods in [12]. 
Military maneuvers were detected from GPS tracks of 
hundreds of vehicles engaged in large force-on-force 
military exercises using ad hoc pattern recognition methods 
in [4]. A visualization tool is presented in [1] to study 
patterns of movement in virtual environments and games, so 
designers can better understand user behaviors and improve 
the design of the game. 

A large body of work addresses recognizing activities 
in video. Typically, this work uses relatively high-quality 
tracks and hidden Markov models (HMM) and dynamic 
Bayes nets (DBN). For example, multi-agent activity 
(football plays) was recognized from video tracks of people 
in [6], using belief networks to detect individual agent goals 
and the overall activities (plays). Activities involving video 
tracks of pedestrians were represented as a series of events 
modeled with HMMs in [10]. A large body of similar work 
applying HMMs and DBNs to video has occurred in the last 
ten years. A video event representation language (VERL) 
was presented in [5]. An example was presented where 
symbolic VERL description of events are extracted from 
video of people and then events are organized into time 
sequence threads and then into branching/parallel threads. 

Motion patterns are extracted from long-term (months) 
outdoor video of people in [14], using co-occurrence 
matrices calculated from codebook index sequences derived 
from tracks of people in the video. Methods to estimate 
sources, sinks and transits from short tracks in video are 
presented in [13]. 

Person-object interactions during routine household 
activities were sensed using RF id tags on the objects, and 
the activities were recognized using HMM and DBN models 
in [11]. RF tags can scale to building-sized areas. Binary 
detection of movement was sensed using infrared motion 
detectors in a busy office building, and the activities were 
recognized using HMMs in [15]. Noisy positional readings 
from id badge sensors were constrained to the links of the 
Vornoi graph for an office area in [8]. Their tracker 
algorithm also utilizes the graph. 

3. No-Go Topology 
The idea behind no-go topology is that a built-up area 

is filled with “no can go” areas that a vehicle can not drive 
through, such as a fence, building, curb, ravine, stream. The 
no-go areas are typically obtained from maps, high-
resolution downlooking imagery, elevation data, and 
possibly augmented by on-the-ground observations. The no-
go areas define a topology and a graph structure, showing 
where vehicles can go, and this can be used to interpret 
movement evidence because the only possible movements 
are along the links in the graph. Figure 1 shows an example 
of the no-go areas and no-go graph for a facility. 

Many activities involve specific sources and 
destinations for movements. Movements to/from a building 
are typically made to/from a portal, which is a doorway for 
a person or vehicle. If a vehicle is transporting materials 
to/from a building, then the vehicle is positioned right at a 
portal, whereas if the vehicle is simply transporting a person 
then the vehicle may be positioned in a parking area near the 
portal. New nodes corresponding to portals can be inserted 
into the graph. Vehicles moving between portals in the real 
world are equivalent to following a path between two portal 
nodes in the graph. 

The no-go graph provides a constraint for the 
interpretation of movement evidence, for example to 
estimate frequencies of node-to-node transits from noisy 
movement evidence. No-go topology is an urban 
generalization of the classic technique of projecting GMTI 
dots onto road networks in the open countryside. Similar 
ideas were reported in [8] for noisy sensors in an office area. 

4. Chokepoint-Observation Interaction 
The width of paths in the no-go topology will vary. 

Some paths may go along a paved road with curbs, which is 
a relatively narrow path. Other paths may travel through 
large open areas, for example if several buildings are 
surrounded by paved areas, so in that case the width of a 
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path may be the relatively large distance between the 
buildings. The width of a path often varies along the length 
of a path, for example a path can narrow when passing 
through a gate. Intervals where paths have narrow width are 
called chokepoints. Often these intervals are points or are 
very short. Some examples of chokepoints are: a gate, an 
entrance road, narrow corridors between buildings, designed 
intersections. Sources and destinations for movement are 
often chokepoints, for example a portal or a small parking 
area next to a portal. 
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Figure 1. (a) Buildings in the facility. A few buildings 
were divided into two virtual buildings. (b) No-go areas 
are shaded gray. Nodes in the no-go graph are shown as 

circles. Additional nodes associated with portals are 
shown as squares. 

 
Observations of movement through chokepoints carry 

large amounts of information because the movement is 
constrained to pass through the small area of the chokepoint. 
We use the term chokepoint-observation interaction to refer 
to the class of algorithms that compute features from the 
interaction of observations and polygonal areas carefully 
placed around chokepoints. Multiple polygons can be placed 
at a single chokepoint for use in a feature calculation, for 
example concentric circles, adjacent rectangles, or multiple 

wedge shapes. Features can be computed from the 
interaction of the chokepoint polygon(s) with a single 
observation, or the interaction with a set of observations, for 
example all observations during a short time interval. 

The interaction of track observations and polygonal 
areas is used in video surveillance systems as tripwires and 
for counting passages. Our approach extends that simple 
idea by (a) utilizing more complex features derived from the 
chokepoint-observation interaction, (b) using multiple 
chokepoints together to extract information about more 
complex patterns of movement, and (c) our formulation 
specifies the chokepoints as being located on links in the no-
go graph. The next portion of this paper incrementally 
presents our solution – building on the ideas of the no-go 
graph and chokepoint-observation interaction – for 
recognizing activity-type processes using GMTI data. Some 
more general details are presented below, and the next 
section addresses activity-type processes. 

Polygon-Tracklet Interaction. A GMTI sensor 
produces geo-registered dots over time that correspond with 
moving vehicles. A tracker is normally used to connect the 
dots into tracks. Long tracks are difficult to produce from 
sensor data of built-up environments. We begin with 
observation data that consists of more realistic short tracks, 
called tracklets. So the idea of chokepoint-observation 
interaction is instantiated as the interaction of a polygon (for 
the chokepoint) and a tracklet (for the observation), as 
illustrated in Figure 2. The ellipses overlayed on the 
tracklets represent the known positional error associated 
with those sensor measurements. The positional error 
ellipses shown in the figure are intentionally made small to 
make the illustration more clear. In practice the ellipses are 
much larger than typical chokepoint polygons. 

 
Tracklet  ok

Polygon  Si   

Tracklet  ok

Polygon  Si  
Figure 2. Example interactions between a polygon and a 

tracklet. 
 
Estimating Enter and Exit Events. Many different 

features could be calculated from polygon-tracklet 
interactions, but for our example we need to detect when a 
vehicle enters or exits a chokepoint. An enter event occurs 
iff a tracklet is outside the polygon and then at a subsequent 
time is inside the polygon. The probability that a tracklet 
entered a polygon can be estimated as the product of two 
probability masses, corresponding to the trailing section of 
the tracklet being outside the polygon (while accounting for 
the positional error of the tracklet points) and then the 
leading section of the tracklet being inside the polygon. The 
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time that an enter event occurs is more difficult to estimate 
because of the complex interaction of the tracklet error 
ellipses with the polygon. We calculate it from the point 
where a linear path derived from the tracklet crosses the 
boundary of the polygon. 

Many tracklets O={ok} can be near a polygon Si at any 
point in time tk, so we really want the values of 
P(enter,Si,tk|O), the probability of an enter event occurring 
at each time instant while considering all nearby tracklets, 
which can be calculated (we use an approximation) from the 
tracklet-specific quantities described above. The equations 
for an exit event are similar to those described for an enter 
event. 

Estimating Transfer Events. A transfer event is the 
combination of an exit event from one polygon followed by 
an entry event at another polygon. In our example of 
manufacturing processes, this corresponds with a vehicle 
making a trip to transfer material between two buildings. 
We want to estimate P(transfer,Si,Sj,tk|O), the probability 
that a transfer occurs from polygon Si to polygon Sj at time 
step tk, which we calculate from three core elements: the 
probability that an exit event occurred at polygon Si, the 
probability that an enter event occurred at polygon Sj, and 
the probability distribution for the transfer time between the 
two polygons. The basic idea, depicted in Figure 3, is that a 
transfer occurs if a tracklet departs polygon Si at some time, 
and then a consistent time later (determined by the length of 
the paths between the two polygons in the no-go topology) 
another tracklet enters polygon Sj. If a third chokepoint 
existed on the transfer path, tracklets interacting with that 
chokepoint could be incorporated to improve the quality of 
the estimates. A method similar to ours for estimating exit, 
entry and transfer events, but for less noisy video tracklets, 
was reported in [13]. 
 

Building Bi

Building Bj

Portal Pi

Portal Pj

Tracklet ok
exits at time te

Tracklet ol
enters at time te+Δ

Shape Si
Shape Sj

Exit
at time te

Entry
at time te+Δ

Consistent Crossing Time Interval Δ

 
Figure 3. The basic idea for detecting a transfer event. 

5. Direct Modeling and Recognition of 
Process-Type Activities 

A process-type activity is an activity that involves 
regularly repeated actions. Those actions cause materials 
(raw materials or intermediate components) to move 
through a fixed, structured process. Obvious examples of 
process-type activities are various manufacturing processes. 
Less obvious examples are the operation of a retail store, a 
pizza delivery store, and security operations around an 
office building. Many activities that are not processes 
include components that are processes, and sometimes the 
larger activity can be detected or classified from that 
component alone. 

The following subsections present our mathematical 
model for a process-type activity, our methods for 
estimating model parameters and for classifying 
observations, and lastly our experimental results. The 
example problem used in this paper involves a 
manufacturing facility that usually produces “benign” 
products but there is suspicion that is sometimes produces 
“bad” products. Process models for the “benign” and “bad” 
products are known. Persistent GMTI observations are made 
of the facility. The problem is to estimate the parameters of 
the process model from those observations and to decide 
whether the facility is manufacturing the benign or good 
product. 

5.1. Model for Process-Type Activities 
The model for a process-type activity consists of a 

graph G=({Bi},{Lij}) and the associated variables {wij} and 
{tij}. Figure 4 shows an example. Each node Bi represents 
location i, a source and/or destination location for material 
transfers. Each link Lij represents a transfer process of 
materials between two locations. The variable wij denotes 
the time interval between material transfers, and the variable 
tij denotes the time needed to perform one material transfer. 
Both these variables have probability distributions. If a 
vehicle performs a material transfer and then does 
something else not involving transfer of materials, that 
something else is not described by our process model, and 
that subsequent movement is treated as yet another of the 
many vehicles driving around that are not involved in the 
modeled activity. 

B1B1 B2B2 B3B3

L1,2

L2,1

L2,3

B1B1 B2B2 B3B3

L1,2

L2,1

L2,3

 
Figure 4. Graph for the model of a process-type activity. 

 
The graph for a process model is related to the no-go 

graph for the facility where the process is performed. In our 
example, each node Bi is a portal to a building, and the 
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transfer process represented by Lij involves vehicles driving 
along any of the paths in the no-go graph that link locations 
i and j (for simplicity we assume only one such path exists). 
The probability distributions for {tij} can be estimated from 
the path lengths in the no-go graph and the types of vehicles 
and materials involved in the transfers. 

The model parameters that are specific to an activity 
are the {wij} variables, which can be arranged into a matrix 
W=[wij]. In general, all the other quantities above are 
common to all process models within the area of operations. 
The structure of the process graph can be characterized 
using various quantities [2][3] calculated from the weighted 
connection matrix W. 

5.2. Model Estimation and Recognition of 
Process-Type Activities 

Given two models, WA and WB, for the process-type 
activities named A and B, and given a set of observations 
O={ok}, we want to decide whether the observation data is 
most consistent with process A or process B. 

First we need to estimate the process model parameters 
W* given the observations O={ok}. Recall that wij denotes 
the time interval between material transfers. Each value w*ij 
in the matrix W* is estimated independently. Section 4 
described how we estimate P(transfer,Si,Sj,tk|O), the 
probability that a transfer occurred along link Lij at time tk. 
Our current method for estimating w w*ij thresholds the 
P(transfer,Si,Sj,tk|O) values and calculates the frequency of 
transfers over time in the resulting binary data. That method 
has been sufficient for our experiments, but a better estimate 
would utilize Fourier transforms. Our experiments utilized 
only the tracklet type of observation, but our approach can 
easily be extended to utilize additional observation types, 
such as vehicle identity evidence, GMTI dots, imagery-
derived change events, and evidence about the types of 
materials being transferred. 

Given the process models, WA and WB, and the 
process model W* estimated from the set of observations, 
the decision about which process model α is best supported 
by the data is made using the following rule. 

∑ −=
= ji

ijij
BA

ww
,

*

,
minarg α

α
α  

5.3. Experiments 
The real-world industrial area depicted in Figure 1 was 

used for our experiments to ensure a realistic facility layout, 
including building portals, fences, gates, parking areas, 
movement routes, etc. The operational area spans 700 by 
600 meters. An understanding of typical geospatial routes 
through the facility was obtained by recording once-per-
second GPS positions of five cars emulating a 
manufacturing process. These field experiments were 
invaluable and enabled us to simulate realistic data for the 
facility. The area is real, but the facility is hypothetical. 

This facility can manufacture product A or B. The 
models for manufacturing process A and B, which we also 
call foreground activities, are shown in Figures 5 and 6. 
Markov models were also defined for three clutter (2 
security and 1 maintenance) activities. Thus, the foreground 
activities are embedded in the same space-time volume as 
the clutter activities. Our simulator utilizes the geospatial 
paths associated with the no-go graph links, models for the 
foreground and clutter activities, and a model for the GMTI 
sensors. Our simulator generates GMTI dots and assembles 
sets of 5-15 dots into tracklets. One typical dataset is 
illustrated in Figure 7. Manufacturing process A was 
performed during Day 1 and manufacturing process B was 
performed on Day 2. GMTI observations of the facility were 
made continuously. The 2σ positional error ellipses for the 
GMTI dots here are 150 by 15 meters. 

 

B5
Final Assembly

B8
Receiving

B11
Machine

Shop

B3
Chemistry

B7
Shipping

B12
Widget

Manufacture

B10
Storage

B9
DooDad

Manufacture

B6
Testing

 
Figure 5. Graph that combines nodes and links from all 

process models at the facility. 
 

B6 B7 B8 B9 B10 B11
B6 0.28
B7
B8 0.14 0.14
B9 0.26 0.14
B10 0.14
B11 0.42   

B6 B7 B8 B9 B10 B11
B6
B7
B8 1.39
B9
B10 0.14
B11 0.28  

 (a)   (b) 
B6 B7 B8 B9 B10 B11

B6 36.1
B7
B8 9.4 16.9
B9 36.7 18.9
B10 8.6
B11 9.7   

B6 B7 B8 B9 B10 B11
B6
B7
B8 13.3
B9
B10 7.5
B11 10.6  

 (c)   (d) 
Figure 6. Process model parameters. Values for wij, 

interval in hours between transfers between location Bi 
and Bj, are show for activity (a) A and (b) B. Values for 

tij, duration of transfer in 10-3 hours, are shown for 
activity (c) A and (d) B. 
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Day 1 Day 2
Foreground
   # Transfers 55 17
   # Tracklets 184 31
   # Dots 3115 502
Background
   # Transfers 50 50
   # Tracklets 122 127
   # Dots 2256 2272  

(a) 

   
(b)   (c) 

Figure 7. (a) Size of one typical dataset. GMTI dots for a 
small subset of the (b) Day 1 and (c) Day 2 datasets. 

 
The polygons shown in Figure 8 were manually 

created around portals. One portal was identified for each 
building. Figure 9 depicts the material transfers detected 
between all portal pairs. This figure depicts the thresholded 
value of P(transfer,Si,Sj,tk|O). All the (Si,Sj) pairings are 
listed along the y-axis. Following any single horizontal line 
across the chart shows a series of line segments, and each 
line segment denotes the duration of one material transfer. 
Next, the process model parameters were estimated from the 
observation datasets. Our decision rule correctly classifies 
the Day 1 dataset as being most consistent with 
manufacturing process A, and the Day 2 dataset as being 
most consistent with process B. 

 

 
Figure 8. Polygons created around portals and 

chokepoints in the facility. 
 

 
Figure 9. Material transfers detected. 

 
We generated several versions of the Day 1 dataset, 

each with a different size for the positional error ellipse 
associated with the GMTI sensor observations. The major 
axis of the error ellipse was varied from 10 meters to 150 
meters. The minor axis was one tenth of the major axis. 
Figure 10 shows how the correct classification performance 
for those Day 1 datasets varies as the positional error ellipse 
becomes larger. The y-axis is a matching metric reflecting 
how well the model for manufacturing process A is 
supported by a dataset. Each point along the y-axis denotes 
a different Day 1 dataset generated using the specified 
positional error ellipse size. These initial experimental 
results use tracks rather than tracklets and no clutter 
activities. 

 

 
Figure 10. Relationship of correct classification for Day 
1 datasets with different positional error ellipse sizes. 

 
A downward trending plot is observed, which makes 

sense. A manufacturing process should be easy to identify 
given simulated GMTI sensor data that has very small 
positional error ellipses, and the manufacturing process 
should be harder to identify as the positional error ellipse 
gets larger. Classification performance is of course also 
dependent on the distance separating buildings in a facility. 
The building separation values in our facility are: minimum 
63, ad hoc typical 189, average 309, maximum 701 meters. 

This type of plot shows that it is possible to correctly 
classify a complex activity in GMTI data, although the size 
of the required positional error ellipse is smaller than most 
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GMTI sensors today. Simulation experiments like this are 
helpful to designers of future GMTI sensor systems, because 
they indicate how much positional error can be tolerated 
while still allowing complex activities to be recognized. 
Distance between buildings is also an important parameter, 
and so it will be easier to recognize activities in a facility 
with widely separated buildings relative to the GMTI sensor 
system's positional error ellipse size. 

6. Indirect Detection and Analysis of 
Unknown Activities Using Clustering 
and Markov Models 

Often a high-level model for a wide-area activity is not 
available (such as the process-type activity model in the 
previous section) because not enough is known beforehand 
about the activities occurring in an observation area. In 
these situations a low-level approach is required. Our 
approach provides a generic low-level model for the overall 
activity in an area, which we refer to as a normalcy model. 
Unknown but interesting activities can be discovered as 
deviations from a learned normalcy model. Our approach 
can be used to discover activity patterns, characterize an 
unknown activity, and generally to help a human develop a 
good understanding of the activity, which can eventually 
lead to the creation of an explicit high-level model for the 
activity. 

Following is a quick summary of our approach [7]. 
This approach was originally developed for tracks of people 
playing sports in video. Our purpose here is to show the 
benefits of applying those methods to analysis of wide-area 
activity patterns. The approach uses track or tracklet 
observations that have small positional errors. If tracks are 
used, each track is broken into short segments (tracklets) 
that have a fixed time duration, typically a few seconds. 
Several features are calculated for each tracklet (e.g., world 
position, speed, direction, acceleration, curvature, shape 
primitives) and packed into a feature vector. A clustering 
algorithm is applied to the set of feature vectors in an 
observation dataset, resulting in a set of prototype vectors, 
which are the centers of the resulting clusters. Since the 
feature vector includes the world position of a tracklet, the 
clustering can be biased towards geo-spatial clusters that 
also share some other common features. A movement 
through space can then be represented as a sequence of 
cluster indices. A Markov model, with weighted transition 
matrix, is learned from those sequences. This assumes 
enough information is available to reliably connect either a 
few or several tracklets into a longer track. 

The rock quarry depicted in Figure 11 was used for the 
experiments here. The operational area spans 3000 by 2000 
meters. Many activities in the quarry have a repetitive or 
process-like nature, but we do not explicitly use that 
knowledge. The observation data consists of GPS tracks for 
three mining vehicles, sampled once per second, all day, for 

25 days. These tracks are broken into fixed length tracklets 
that are a few seconds long. We believe the large area and 
relative separation of vehicles in this facility would enable a 
GMTI tracker to produce reasonably good tracklets. 

Figure 12 shows the clusters derived from the entire 
observation dataset. The ellipses represent the covariance of 
the points within each cluster, and the ellipses have been 
projected onto the same latitude-longitude coordinates as the 
overhead view in Figure 11(b). 

 
(a) 

 
(b) 

Figure 11. (a) Side and (b) overhead view of quarry. 
 

 
Figure 12. Feature vector clusters. 
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Careful study of the clusters can provide useful 
information about the activities being performed in the 
facility. Figure 13 shows two clusters, which cover 
approximately the same area, and a histogram of the data in 
those clusters over the hours of the day. The histograms 
show large peaks at 5am and 10pm, which suggests that this 
is a possible location of a garage. Figure 14 shows another 
pair of clusters (it is just a coincidence that there are again 
two clusters at a location), and a histogram of the data in 
these clusters over the Julian day of the year. The histogram 
shows large peaks at days 53-55, which suggests that this is 
the opening of a new dig face. 
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Figure 13. These two clusters are correlated with the 

time of day. 
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Figure 14. These two clusters are correlated with the 

Julian day of year. 
 
Relatively simple visualizations of the feature vectors 

can also provide useful information about the activities 
being performed. For example, Figure 15(a) shows that high 
speeds occur along specific paths. Figure 15(b) shows 
periodic activity corresponding to days of the week, no 
activity at night, and that certain vehicles are only active 
during portions of the three-week period. 

The probability of an observation sequence can be 
calculated from the learned Markov normalcy model. Figure 
16 shows two such sequences (meaning the tracklet points 
associated with the cluster index sequences). Track 248 has 
a relatively high probability of 0.3, which means this track 
is highly consistent with the Markov normalcy model. Track 
247 has probability 0.01 and is an example of a deviation 
from the normalcy model. While this is simply a deviant 
track, more complex types of deviations could be calculated 
from normalcy models. Track 247 is this example drives on 
the left side of the path, has unusual curved motion, and the 
vehicle stops and waits for a short time during the transit. 
Note that the terrain of the quarry is continually changing so 

the orthoimage shown in the figure is old relative to the 
track data. 
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Figure 15. (a) Dataset colored-coded to indicate speed. 
(b) Dataset plotted on longitude-time axes. 

 
Track 247 appears “unusual”

(low probability ~0.01)

Track 248 is more typical
(higher probability ~0.3)

 
Figure 16. Identifying interesting activities as a deviation 

from the Markov normalcy model. 

7. Summary 
This paper introduced new methods to model, 

visualize and automatically recognize wide-area activities, 
which commonly occur in urban and built-up areas (e.g., a 
facility). A new category of wide-area activity is identified, 
process type activities, which involve structured repetitive 
material transfer movements. 

We introduced the no-go topology method and the 
chokepoint-observation interaction method, and then 
showed how new algorithms can be built on them to 
recognize process models in observation data. Experimental 
results were presented for a manufacturing facility observed 
using persistent GMTI data. 
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This paper demonstrates that wide-area activities can 
theoretically be identified in built-up environments using 
GMTI data. This is a new concept and still a very hard 
problem. We essentially begin with the easiest possible 
theoretical situation (continuous GMTI observations, small 
positional error ellipses, repetitive activities) and want to 
move toward realistic parameters in operational situations 
(fewer observations, larger error ellipses, figuring out how 
to exploit additional kinds of activities). Simulation results 
were presented to illustrate how much positional error can 
be tolerated in the GMTI observations while still obtaining 
good discrimination of activities. This kind of analysis 
result is helpful for selecting design parameters for future 
GMTI systems that can address future mission needs. 

In order to illustrate all major approaches for 
addressing wide-area activities, the paper quickly presents 
some results where explicit high-level activity models are 
not used. A combination of clustering methods and Markov 
models are used to represent low-level patterns of activity in 
a wide area. Then we presented experimental results 
illustrating how an interesting activity can be detected as a 
deviation from the normalcy model, and how new activity 
patterns can be discovered using simple visualizations of the 
results. 
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