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Abstract. As autonomous vehicle systems become more prevalent, their navi-
gation capabilities become increasingly critical. Currently most systems rely on 
a combined GPS/INS solution for vehicle pose computation, while some sys-
tems use a video-based approach. One problem with a GPS/INS approach is the 
possible loss of GPS data, especially in urban environments. Using only INS in 
this case causes significant drift in the computed pose. The video-based ap-
proach is not always reliable due to its heavy dependence on image texture. Our 
approach to autonomous vehicle navigation exploits the best of both of these by 
coupling an outlier-robust video-based solution with INS when GPS is unavail-
able. This allows accurate computation of the system’s current pose in these 
situations. In this paper we describe our system design and provide an analysis 
of its performance, using simulated data with a range of different noise levels.  

1 Introduction 

Global Positioning System (GPS) outages are a serious problem to any autonomous 
vehicle system. Many autonomous navigation systems today rely on the consistent 
availability of GPS to compute an ongoing estimate of vehicle pose (position and ori-
entation). GPS dropouts are not uncommon, typically occurring next to buildings or 
occluding land formations. GPS can also easily be jammed or spoofed. To accommo-
date GPS dropouts, a robust autonomous navigation system must additionally exploit 
an inertial navigation system (INS) approach using accelerometers and gyroscopes, 
and it must be tolerant of varying amounts of INS drift. Angular drift varies with INS 
quality and associated expense, and lower cost solutions typically rely on corrections 
from GPS to provide the best performance. Alternatively, video data can be used to 
compute vehicle pose in the absence of GPS. A video-based approach used alone is 
problematic, however, due its reliance on image texture. The presence and amount of 
image texture is context dependent and cannot be characterized in general. 

The video-based pose approach that we use performs well on data containing many 
outliers due to our use of a statistical sampling analysis of the data. While this ap-
proach is common in video-based 2-frame pose estimation, it has not been used be-
fore as a method for outlier filtering for a Kalman based pose tracking system. Video-
based solutions are not computed for every frame of data and hence our system han-
dles the multi-rate approach providing an estimated pose at the highest sensor rate.  



This problem is in general an example of an approach to the simultaneous localiza-
tion and mapping (SLAM) problem, as it is sometimes referred to in the computer vi-
sion community [1-3] which simultaneously estimates both the camera motion as well 
as the 3D locations (structure) of the tracked features – typically using only imagery. 
The addition of inertial measurements for improved accuracy is not new in computer 
vision [4-18]. Most of these approaches merge inertial measurements in a Kalman-
based filter. Many approaches use a minimization technique on the image plane error 
to estimate the pose of the camera and combine this with the inertial measurements 
while some incorporate the features directly in the Kalman. Our approach differs from 
these in how we identify features to insert into the Kalman filter. By first performing 
outlier-robust pose estimation, we guarantee that the features added in the Kalman are 
inliers and initialize the 3D location of the feature points within the Kalman. 

The autonomous navigation system described in this paper has three general areas 
of consideration: 1) the use of video sensor data, 2) computation of video-based vehi-
cle pose, and 3) integration of video-based and INS-based vehicle pose. The presenta-
tion of the system in this paper is organized in terms of these three areas. Section 2.1 
presents the simulated data generation capability that is used to provide data as input 
to the system. Video-based pose computation is described in Section 2.2. Integration 
of video-based pose and INS-based pose using a Kalman filter is described in Section 
2.3. Section 3 presents analysis and results comparing the integrated system with an 
INS-only and a video-only approach and demonstrates that the combined system per-
forms better than either system independently. 

2 System Description 

We have developed a Video Aided Navigation (VAN) system that provides an ongo-
ing estimate of vehicle pose. In the general system, GPS, INS, and video data sources 
are used. Dropouts of GPS data or periods of non-useful video data are expected and 
accommodated. In this paper, we focus specifically on the point where GPS data be-
comes unavailable or unreliable. We are currently focusing our attention on an air-
borne platform scenario, specifically an unmanned air vehicle (UAV). 

The system diagram is shown in Fig. 1. An imaging sensor is mounted on a UAV 
platform directed toward the ground. Features are extracted from the initial image in 
the video stream (as in [19]) and tracked as the images are collected using a correla-
tion-based feature tracker. These feature tracks are used to compute the vehicle pose 
using either an essential matrix or a homography matrix estimation. The set of feature 
tracks will tend to include outlier features arising for various reasons (see Section 
2.1.1). The image-based pose estimation module removes these outliers by perform-
ing a RANSAC-based sampling analysis which uses a robust error measure for outlier 
rejection (see Section 2.2 as well as [3, 20]). The Kalman filter maintains an estimate 
of the vehicle pose by combining the vision-based measurements with the INS meas-
urements from the platform after initializing with the GPS corrected INS system pose. 



 

Fig. 1. Video Aided Navigation System Diagram 

2.1 Full System Model 

In order to systematically vary data inputs and noise levels, we have created a system 
model simulation package. The entire simulation consists of the following pieces. 

• Ground plane of points 
• Aerial vehicle (UAV) 
• Camera system with fully defined intrin-

sic parameters 
• Camera attached to the UAV platform 
• One or more movable objects on the 

ground plane 

• Ground truth transformations between all 
system objects 

• INS system connected to the UAV 
• GPS system connected to the UAV 
• Complete noise models for each sensor in 

the simulation  

The ground plane consists of a grid of 3D representing features extracted and 
tracked in a video stream. The terrain is modeled using sine wave functions. The 3D 
position of a given point on the ground plane dictates where it projects into an ori-
ented camera of a given field-of-view. A trajectory specifies a sequence of platform 
poses, and each video frame consists of the projection of the collection of ground fea-
tures that are visible. In order to accurately simulate what we would expect to see in 
real data, noise models have been developed for each simulated sensor. 

2.1.1 Simulated Feature Tracks 
The objective in feature extraction and tracking is to first find a large number of 
unique (trackable) features and track them over as many subsequent frames as possi-
ble. The vision community has spent a great deal of effort over its history developing 
robust feature extraction techniques. One of the more successful of these approaches 
makes use of the eigenvalues of the covariance of the local image gradient computed 
over a neighborhood at each image point [19, 21, 22]. Feature points are selected at 
locations where the smaller eigenvalue is greater than a threshold. This selects points 
that have significant intensity variation along both image dimensions.  

Our data generation system creates track information that simulates a feature detec-
tor and tracker’s output by adding noise to the true projected image positions of the 
3D ground points. For a given simulation the ground features are partitioned into a set 
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of inliers and outliers. Inliers are feature points with small position errors that are 
tracked well and that correspond to a real fixed 3D feature. Outlier points have gross 
errors and model features not associated with a fixed 3D ground point (such as a mov-
ing object) or features that are not reliably tracked. Separate image plane noise mod-
els are applied to inliers and outliers. The following list outlines various causes of out-
liers typically seen in visual imagery, each of which we can simulate either by adding 
Gaussian image plane noise, or by adding moving objects to the simulation. 

• Bouncing: Trackers can find high similarity in nearby locations and track points back and 
forth between these two locations. 

• False Feature: Features drift due to an apparent feature at a depth discontinuity.  
• Moving Objects: Arises from a moving object being in the field of view. 
• Appearance Change: Drifting features as the appearance changes due to varying viewpoint. 

2.1.2 Simulated INS 
Along with the visual input, we rely on input from the INS system onboard the vehi-
cle. We assume that the INS consists of a tri-axial gyroscopic sensor and a tri-axial 
accelerometer. The simulated sensor outputs are computed from first and second de-
rivatives of the ground truth vehicle poses. Our noise model for a gyroscope output, 
consists of the true vehicle rotation rate, a constant offset, a moving or walking bias, 
and a wide band sensor noise such as that described in [23]. The wideband sensor 
noise is assumed to be zero mean Gaussian and is therefore specified by the sample 
covariance. The gyroscope’s moving bias is modeled as a first order Markov process. 
The noise that drives the bias is zero mean Gaussian with sample covariance of one. 
In order for us to use this approach to model the gyroscope, an iterative solution to the 
process has to be used. We use the approach described by Brown in [24]. The resolu-
tion of the synthetic noise can be increased by either increasing the number of sam-
ples or by taking averages of completely separate random seeds.  

2.2 Image-Based 2-Frame Pose Solution 

There has been much previous work (summarized well in [25]) on computing camera 
pose from corresponding image points in two frames. When the internal calibration 
parameters of the camera are known, the motion can be captured in a matrix knows as 
the essential matrix. To solve for the essential matrix from points in two frames, we 
use the standard 7-point linear solution method described in [25] and the 4-point 
method for the estimation of planar homographies also given in [25]. Another notable 
approach is the 5-point method for the direct computation of the essential matrix [26]. 
The seven and four-point algorithms require a linear system solution to find the essen-
tial matrix or planar homography, which produces a solution for the given correspon-
dences. Up to two motion and structure solutions can be extracted from the homogra-
phy using the method described in Section 5.3.3 of [27]. One can also recover pose 
solutions for a rotation-only motion from a homography, which is not possible from 
the essential matrix. All of these algorithms can be applied to more than the minimum 
number of points, which can reduce the noise-sensitivity of the algorithm. If more 
than the minimum number of points is used, the solution spaces are just taken as the 
minimum norm subspaces of the desired dimension. 



One of the difficult problems in this video-based pose estimation is that outliers 
(feature points with gross errors) can bias a motion solution sufficiently to make it 
useless, as is true with any least-squares-based solution. To avoid this deleterious ef-
fect of outliers, our approach uses the MSAC (M-estimator Sample Consensus [28] 
algorithm (a variant of RANSAC [20] which uses a robust error measure) to find a so-
lution based on a reliable subset of the image feature points. Given a set of image 
point trajectories and a pair of image frames, MSAC randomly selects a minimal set 
of points and solves for the camera projection matrices and 3D structure describing 
the image feature motion over the two frames. We currently use either the 7-point 
fundamental matrix solution, which is converted into an essential matrix when the in-
ternal camera parameters are known, or the 4-point homography solution. These mo-
tion estimation algorithms are run on many (in our implementation 400-500) random 
samples of seven or four points (depending on the algorithm chosen) and the best so-
lution is selected and returned. The choice of algorithm is based on the rank properties 
of the data matrix as described in [25] Section 10.9.2.  

The criterion for the selection of the best solution for the two frame problem is 
measured in two stages. In the first stage the solution quality is characterized in terms 
of the symmetric epipolar distance [25], which is computed from the residual error 
between the image points and the epipolar lines in both images. The contribution to 
this error of a point is  where  ( )2eρ
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and is the distance of the point’s image position to the epipolar line (averaged over 
both images), and  is a threshold based on the expected feature point error. The set 
of points with  is the set of inliers for a particular solution. The quality of a 
particular solution is then based on its first stage residual error, which is computed as 
the sum of the  over all points. The solutions are then further tested in order of 
increasing first stage residual error by re-computing the solution over all inliers and, 
in the case of the seven point algorithm, finding the essential matrix nearest to the 
computed fundamental matrix. Given the 3D locations of the points, we compute the 
second stage error as the geometric error [25], which is the deviation between the re-
projections of the 3D points and the original image feature locations. If no solutions 
are found with more than the desired number of inliers, the algorithm returns with a 
failure. Otherwise, the first solution (lowest error in the first stage of screening) with 
the required number of inliers is returned. 
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Because of MSAC’s iterative nature, the computation time becomes an issue. In 
order to maintain faster running time, we do not run the MSAC algorithm on every 
frame, but on a subset of the frames. Detailed descriptions of our method for selecting 
frames can be found in [3] which enforces the constraint that a minimum set of corre-
sponding features are maintained. This 2-frame essential matrix estimation provides 
two functions. First, it provides a 3D structure and motion solution that is used to ini-
tialize the 3D points in the Kalman. Second, it provides a filtering mechanism for re-
moving the outliers from the feature tracks before they are fed into the Kalman filter. 



2.3 Sensor Integration using a Kalman Filter 

Because the function relating a feature point position to an image observation is non-
linear, we have evaluated an Extended Kalman Filter (EKF) to simultaneously esti-
mate the motion of the camera and the locations of 3D points in the scene. As input, 
the Kalman filter uses feature point locations from the tracker, as well as INS data 
(i.e., raw gyroscope and accelerometer readings). The state vector x  to be estimated 
consists of the following elements: 

• Vehicle pose (3 translational and 3 rotational degrees of freedom) 
• Translational and angular velocities (six additional degrees of freedom) 
• Translational accelerations (3 translational degrees of freedom) 
• The ( ), ,x y z  locations of each of the  feature points being tracked N

Therefore, the full state vector has a total of 15 3N+  elements. By combining 
these into a single state vector, we can represent cross-correlation between different 
axes of the motion, the cross-correlation of the uncertainty between different points, 
and the cross-correlation  between the motion and the structure. 

We have found that the EKF convergence is sensitive to the initial state. We have a 
good initial estimate of the pose of the camera at the beginning of the VAN process 
from the vehicle’s GPS corrected INS pose estimation. However, we also need a good 
estimate of the 3D structure as feature points are added to the state. In addition, since 
the EKF assumes a Gaussian state distribution and uses a linearized model for the up-
date step, outliers in measurement data can strongly distort the state estimate. This is 
why we use the 2-frame solution to provide initial estimates of the feature point loca-
tions in 3D and to eliminate outliers from the points provided to the Kalman filter.  

We assume that the sensors are asynchronous and have independent noise, so each 
sensor can be incorporated into the state estimate using a separate measurement up-
date equation. The filter will perform the time update projecting the state from the 
previous update time to the current update when gyroscope data, accelerometer data, 
or camera data (in the form of filtered image plane features) is available. The meas-
urement update step will follow to update the filter's state based on the new measure-
ment input. This is a recursive process and it will run whenever the measurement in-
put data is available. The time and measurement update equations are given in [29]. 

Table 1. Gyroscope Specifications 

Rate Gyro Attribute Units Specs 
Random walk o/sec/√Hz 0.0017 

Bias Time Constant Sec 100 Tactical 
(CASE I) Bias Variation o/hr 0.35 

Random walk o/sec/√Hz 0.05 
Bias Time Constant sec 300 Automotive 

(CASE II) Bias Variation o/hr 180 
Random walk o/sec/√Hz 0.05 

Bias Time Constant sec 300 Consumer 
(CASE III) Bias Variation o/hr 360 

New features are added to the state vector as they are observed, and old features 
that are no longer visible are removed. Thus, the state vector and its covariance matrix 



can dynamically expand and contract depending on the number of trackable features. 
The 3D feature locations are initialized in the state vector based on the 2-frame solu-
tion. The covariance ellipsoid for the feature location is elongated along the projection 
line of the feature to capture the larger uncertainty of the feature depth. 

3 Results and Analysis 

Here we compare three different quality sensor systems – consumer, automotive, and 
tactical grad - as shown in Table 1 and summarized in [23]. The camera qualities cor-
responding to the different typical camera systems with resolutions of 2048x2048, 
1280x1024, and 640x480 for the tactical, automotive, and consumer grade respec-
tively. We assume in each case that the camera has a lens with a field of view held 
constant at 45o, and that our sub-pixel feature matching algorithm can match features 
to 1/10 of a pixel. For each of the runs, the inlier ratio is 85%. Since outliers are de-
rived from tracking problems (as described in 2.1.1), not camera quality, the outliers 
will exhibit different amounts of pixel error for the different camera systems. For 
these experiments, the outlier noise level has been set to 28.47 pixels, 22.78 pixels, 
and 11.12 pixels for the tactical, automotive, and consumer grade camera systems re-
spectively. For each of these sensor systems we show the computed pose from the 2-
frame video-only solution, the INS-only solution, and our combined VAN system. In 
this experiment we show that the combined VAN approach produces superior results 
than either of the two systems running independently.  

 

Fig. 2. Pose solutions for comparison of 2-frame video-only solution, INS-based solution, and 
our VAN system. This plot shows typical results for errors corresponding to a tactical grade 
(CASE I) INS and imaging system. The distances given are in meters. 

3.1 CASE I: Low Noise – Tactical Grade Camera and INS Sensor System 

Three pose estimation approaches are tested; the 2-frame video-only pose solution, 
the INS-based pose solution, and our VAN solution. For the low noise case, the INS 
data was set to the tactical grade sensor settings given in Table 1 and the camera is set 



as described in the previous section. Notice in Fig. 2 the video-only solution presents 
a saw-tooth wave form. This is due to the fact that a solution is computed on only 
every 3rd frame, thus causing the intermittent frames to have increasing error as the 
true pose moves further from the last MSAC solution. Notice also the drift in the INS-
only derived pose. This is typical of INS-only systems. 

3.2 CASE II: Medium Noise – Automotive Grade INS 

The medium noise case corresponds to the values in Table 1 for an automotive grade 
INS sensor and corresponding imaging system. Notice Fig. 3 shows similar results to 
the CASE I setup. The combined VAN algorithm performs much better than either of 
the individual systems. The INS-based system running alone is only slightly worse in 
this case when compared to the previous, likely due to the higher INS system noise. 

 

Fig. 3. Pose solutions for comparison of the 2-frame video-only pose solution, the INS-based 
pose solution, and our VAN system. This plot shows typical results for errors corresponding to 
an automotive grade (CASE II) INS and imaging system. The distances given are in meters 

3.3 CASE III: High Noise – Consumer Grade INS 

For the high noise case, the noise values used on the INS data correspond to the val-
ues in Table 1 for the consumer grade INS system and corresponding imaging system. 
Notice in Fig. 4 the trends are as expected with higher noise in the combined VAN 
approach, but still much better than either of the systems individually. Notice in this 
case, video-only occasionally failed to find a solution. This is likely due to the fact 
that at these higher noise levels, many of the inliers begin to look like outliers, and if 
there are not enough inliers, no solution is returned. 



4 Discussion and Conclusions 

In this work we show that autonomous navigation systems consisting of INS/GPS 
systems are not adequate due to INS drift when GPS signals are lost. Video-only solu-
tions will not perform robustly when image texture is inadequate for feature tracking 
or flow based methods. We have proposed and demonstrated a combined VAN ap-
proach which merges both INS and vision systems to exploits the benefits of each us-
ing a new outlier filtering technique. Our system is still in early development and fur-
ther testing on real data sequences will be necessary for full validation.  

 

Fig. 4. Pose solutions for comparison of the 2-frame video-only pose solution, the INS-based 
pose solution and our VAN system. This plot show typical results for errors corresponding to a 
consumer (CASE III) grade INS and imaging system. The distances provided are in meters. 
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