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ABSTRACT 
 
Anatomical shapes present a unique problem in terms of 
accurate representation and medical image segmentation. 
Three-dimensional (3D) statistical shape models have 
been extensively researched as a means of autonomously 
segmenting and representing models. We present a 
method based on a principal component analysis of a 
stack of 2D contours represented as Fourier descriptors 
(FDs). A training set for the shape model is generated 
directly from the FDs of the perimeters of the segmented 
regions on each image after a transformation into a 
canonical coordinate frame. We apply our shape model to 
the segmentation of CT and MRI images of the distal 
femur via an iterative method based on active contours. 
Results of the application of our method demonstrate its 
ability to accurately capture shape variations and guide 
segmentation. 
 
 

1. INTRODUCTION 

Current methods in three-dimensional image 
segmentation typically employ statistical shape models, 
first developed by Cootes and Taylor [1] as a means to 
incorporate a priori shape information. Principal 
component analysis highlights the primary modes of 
variation among instances of the shape, allowing for a 
potential reduction in the dimension of the shape space. 

A critical requirement of shape models is to find 
correspondences among instances of the shape to be 
modeled. Shape models can be built from 2D contours, 
eg. [1] and 3D surfaces, eg. [2], where corresponding 
control points, or landmarks, are manually identified on 
each shape instance. Manual selection of control points 
can be tedious and often unreliable due to the subjectivity 
of point selection [3]. 

Our 3D shape model is constructed as a stack of 2D 
contours, each of which is converted to a Fourier 
descriptor (FD) representation after the stack of contours 
is transformed into a canonical coordinate frame. Unlike 
some existing methods, we form a model vector with the 
FDs from all of the contours in a given model, thus 

allowing the identification of inter-slice relationships in 
addition to the in-slice relationships. Our segmentation 
algorithm includes an iterative process of contour 
adjustment via a traditional active contours technique [4], 
followed by a projection into the shape space defined by 
the principal components. 

We tested our method on 19 available image sets of 
the distal femur with mixed MRI and CT datasets. Our 
currently available datasets of the distal femur include 
both left and right femurs, so we mirrored the left femur 
across the midsagittal plane as was done in [5, 6], creating 
additional samples of the right femur. 

The automated model-based segmentation yields a 
stack of 2D contours, which are then combined into a 3D 
surface model. Results of the automated segmentation are 
compared to a manual segmentation of the same datasets 
through a slice-by-slice analysis. 

 
2. APPROACH 

Our method consists of two main steps – constructing a 
statistical shape model from a set of training shapes, and 
autonomous segmentation of similar shapes in 3D medical 
images, guided by the statistical shape model. The 
statistical shape model represents the average of the 
training shapes along with the primary modes of variation 
among the shapes. Model-based segmentation produces a 
new model whose shape must conform to the training 
shapes used to form the model. 
 
2.1. Image preprocessing 

Each 3D image volume to be used as a training set is 
manually segmented to extract the distal section of the 
femur. The binary (black and white) images resulting 
from the segmentation are rigidly registered to a 
coordinate system as shown in Figure 1. The z-axis passes 
approximately through the center of the condyles and 
through the center of the shaft approximately 120mm 
above the condyles. The x-axis coincides with a line 
drawn between the center of the medial and lateral 
condyles and intersects the distal end of the z-axis. The y-
axis is positive in the posterior direction. 
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Fig. 1.  Coordinate frame definition showing (a) coronal 
view (b) sagittal view (c) axial view, and (d) isometric 
view. 

2.2. Fourier descriptors 

Each binary image resulting from the segmentation 
contains at least one region representing the bone cross-
section; in the case of images intersecting the condyles, 
two regions may be present. The regions on each slice can 
be reduced to closed contours, allowing for a FD 
representation to be computed. FDs were originally 
developed by [7] for use in shape discrimination and 
identification as in [8]. Our method uses FDs to normalize 
contours of unequal length and shape and to reduce the 
amount of data required to store each model. 

Each contour is defined by a set of N perimeter pixels 
(Figure 2), whose indices, after multiplication by the pixel 
size in millimeters, represent the x and y coordinates. We 
can ignore the pixel size for the purpose of computing the 
FDs since the preprocessing steps ensure that all images 
have the same pixel size. This allows us to simply use the 
pixel indices, which are all integer values. 

The pixel locations are represented as a vector of the 
form, 
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Fig. 2.  Plot showing the coordinate system used to define 
the pixel locations (512 x 512 image). 

where si = xi + jyi  and j is 1− . The 2D FDs are computed 
via the discrete Fourier transform (DFT) as follows: 
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where the values of k are the indices 0,1,…,N-1. 
The symmetry of the Fourier transform allows a 

reduction in the number of coefficients required to 
accurately reconstruct the original contour. The highest 
magnitude Fourier coefficients occur in the low frequency 
spectrum and we can take advantage of this symmetry by 
removing the high frequency coefficients. We found 
through experiment that 32 coefficients sufficiently 
described the shape of all femoral cross-sections. To 
reconstruct a contour with N ′  points from this reduced 
form, the FD vector a ′  must be constructed as follows, 
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where the number of zeros to be inserted is 32 −′N , 
assuming 32 >N . The vector is padded with zeros to 
create a vector of length N ′ , while maintaining the exact 
shape of the contour as described by the 32 coefficients. 
The effect of the additional terms in a ′ is to increase the 
number of points to be reconstructed from the FDs. The 
reconstruction of the contour points is achieved through 
the inverse Fourier transform, 
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After rounding the reconstructed coordinates to the 
nearest pixel, it is important to note that if NN >′ , s(q) 
will occasionally have repeated values representing the 
same pixel location. If the goal is to reconstruct images 
from the FDs, then this is not a problem; however, if the 
points are to be used in an algorithm such as iterative 
closest point (ICP) matching, the duplicated points should 
be removed to avoid improper point weighting. 
 
2.3. Shape model representation and construction 

Each femur model is composed of M contour slices 
parallel to the axial plane (Figure 3), where the z-axis is 
normal to the axial plane. Each of the M contours is 
described by Q FDs, which are complex pairs as 
prescribed by (1) and (2). A contour is represented by a 
single vector formed by concatenating the real and 
imaginary parts of the Q FD coefficients that represent it. 
The model vector m is then formed by concatenating the 
M contour vectors to form a vector of length n = 2QM. 
The multiple of 2 is due to the real and imaginary part of 
each FD. 

For a set of T models, the n x 1 mean vector, m  is 
calculated by, 
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The modes of variation among the bone models can 
be determined using principal component analysis (PCA). 
First, we must subtract the mean vector, m , from each 

im , forming a matrix whose columns are the deviation 
vectors, 

                                   mmdm ii −= . (6) 

The PCA is performed as an eigendecomposition of the    
T x T deviation matrix Tdmdm  as follows, 
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where pk is the kth orthonormal eigenvector of Tdmdm  
and λk is the eigenvalue corresponding to pk. Arranging 
the eigenvalues in descending order and reordering the 
eigenvectors accordingly, we can determine the principal 
components, or the eigenvectors that account for the most 
significant variance. 

Any shape instance in the training set can be 
represented by the mean model and a linear combination 
of the eigenvectors [9]. Typically, we can accurately 
represent a model with t < T modes, which capture the 
significant variances. The modes corresponding to the 
largest t eigenvalues, or the principal components, are 
used since they describe the greatest variance. As Cootes  

 

Fig. 3.  Model of the distal femur demonstrating the slice 
structure. Note that the slices shown are a select few of 
the total number of slices. 

et al. [10] and Hutton et al. [11]  point  out, we can 
assume that the principal components representing 98% 
of the variance are sufficient to capture the variability in 
the model, while the remaining 2% is considered noise. A 
model can then be approximated as, 
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where αi is the coefficient multiplying the ith principal 
component. This representation allows us to store the 
mean model vector and the vectors corresponding to the 
first t PCs. 
 
2.4. 3D image segmentation 

A 3D image volume that is not included in the training set 
can be segmented by iteratively deforming the FD model 
until the deformed model closely matches the image set. 
The contours, whose FDs describe the model, are adjusted 
by active contours [4], where the external driving force is 
the gradient on each image. The FDs of the adjusted 
contours are projected onto the principal component 
space in equation 8. This projection provides a constraint 
on possible shapes to prevent segmentations that are 
inconsistent with the training shapes. The alternating 
process of active contour deformation and shape space 
projection continues until the following convergence 
function reaches some empirical threshold, 
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where ∆ represents the change in the model parameters 
from one iteration to the next. When this squared sum is 
less than the specified threshold, the model is assumed to 
have converged on a solution. 
 



 

Fig. 4.  Average and minimum percentage of model 
segmented perimeters within two pixels of the manually 
segmented perimeters for values of t ranging from 1 to 18. 
 

  

Fig. 5.  Initial mean model (left) and final, autonomously 
segmented model (right). 

3. RESULTS AND CONCLUSION 

A test of the method was done using a leave-one-out 
approach, see eg. [12], where all but one of the 19 
available image volumes are used as training shapes, 
while the remaining image volume is segmented using the 
shape model. The test is performed for all 19 image 
volumes; once for each image set, and we compare the 
autonomous model-based segmentation results to the 
manual segmentation of that image volume. Additionally, 
the results of tests performed with a varying number of 
principal components (t = 1, 2 … 18) are compared, 
demonstrating that more principal components result in a 
better segmentation. 

The quality of the segmentation is measured by the 
percentage of each perimeter of the automatically 
segmented regions that falls within two pixels (1.5 mm) of 
the perimeter of the corresponding manually segmented 
regions. This percentage is averaged over the M slices in 
the model (Figure 4). 

Figure 5 shows the starting model (mean) for a 
selected training set and the final model created from the 
autonomous segmentation of the left out image volume. 

Also shown are some images from the autonomously 
segmented image set interpolated in the axial, sagittal and 
coronal planes. 

Our shape modeling and segmentation methods have 
produced promising results for the distal femur. The 
methods presented in this paper are readily extended to 
other bones. 
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