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A Robust Method for Registration of
Three-Dimensional Knee Implant Models to

Two-Dimensional Fluoroscopy Images
Mohamed R. Mahfouz*, William A. Hoff, Richard D. Komistek, and Douglas A. Dennis

Abstract—A method was developed for registering three-dimen-
sional knee implant models to single plane X-ray fluoroscopy im-
ages. We use a direct image-to-image similarity measure, taking
advantage of the speed of modern computer graphics workstations
to quickly render simulated (predicted) images. As a result, the
method does not require an accurate segmentation of the implant
silhouette in the image (which can be prone to errors). A robust
optimization algorithm (simulated annealing) is used that can es-
cape local minima and find the global minimum (true solution). Al-
though we focus on the analysis of total knee arthroplasty (TKA)
in this paper, the method can be (and has been) applied to other
implanted joints, including, but not limited to, hips, ankles, and
temporomandibular joints. Convergence tests on an in vivo image
show that the registration method can reliably find poses that are
very close to the optimal (i.e., within 0.4 and 0.1 mm), even from
starting poses with large initial errors. However, the precision of
translation measurement in the (out-of-plane) direction is not as
good. We also show that the method is robust with respect to image
noise and occlusions. However, a small amount of user supervision
and intervention is necessary to detect cases when the optimiza-
tion algorithm falls into a local minimum. Intervention is required
less than 5% of the time when the initial starting pose is reason-
ably close to the correct answer, but up to 50% of the time when
the initial starting pose is far away. Finally, extensive evaluations
were performed on cadaver images to determine accuracy of rela-
tive pose measurement. Comparing against data derived from an
optical sensor as a “gold standard,” the overall root-mean-square
error of the registration method was approximately 1.5 and 0.65
mm (although translation error was higher). However, uncer-
tainty in the optical sensor data may account for a large part of the
observed error.

Index Terms—3-D to 2-D registration, X-ray fluoroscopy, TKA
knee implants, simulated annealing.

I. INTRODUCTION

TOTAL KNEE ARTHROPLASTY (TKA) is a common op-
eration in which the knee joint is replaced with artificial

implants. The implant consists of two metallic components that
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Fig. 1. Artificial knee implant, with tibial component (left) and femoral
component (right). The white material is a polyethylene insert.

Fig. 2. Fluoroscopy image of in vivo TKA.

replace the bearing surfaces on the tibia and femur, separated
by a high molecular weight polyethylene insert (Fig. 1). While
many evaluations have shown excellent relief of pain and im-
proved function, there are still problems associated with pre-
mature failure [1], [2]. It is believed that abnormal kinematics
of implanted knees may lead to excessively high shear stresses
on the polyethylene inserts, thus accelerating wear [3]. More
knowledge of in vivo implant kinematics may allow implants to
be designed that have less polyethylene wear.

Recently, X-ray fluoroscopy has been shown to be a useful
tool for analyzing joint kinematics in vivo [4], [5]. The fluo-
roscopic process creates a perspective projection, where the
metallic implants appear much darker than the soft tissues
surrounding them (Fig. 2), allowing for direct observation
and analysis of the implant components’ silhouettes and their
movements. Unlike methods that optically track skin-mounted
markers, there is no error due to soft-tissue motion, since the
components are observed directly.

There are many advantages of fluoroscopy as a measurement
tool over previous methods. Joint kinematics can be measured in
vivo under dynamic, weight-bearing activities. This is important

0278-0062/03$17.00 © 2003 IEEE
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Fig. 3. Single plane fluoroscopy allows the patient free motion in the plane between the X-ray source and the image intensifier.

in order to observe the effect of muscle loading and soft-tissue
constraints. Many past evaluation techniques do not provide ei-
ther in vivo or dynamic capabilities. These have included ca-
daveric simulations [6], optically tracked skin-mounted markers
[7], externally worn goniometric devices [8], and static X-rays
with tantalum bead markers [9]. Fluoroscopy is also noninva-
sive and relatively low risk to the patient. A typical measurement
protocol of one minute gives the patient a radiation exposure on
the order of 1.8 to 3.6 “rad equivalent man” (rem).

Since we wish to measure kinematics during activities such
as gait, stair step, and chair rise, the patient’s movement must
be sufficiently unconstrained to allow them to perform these
activities unimpaired. We use single-plane fluoroscopy because
it allows the patient free motion in the plane between the X-ray
source and the image intensifier (Fig. 3). Bi-planar fluoroscopy,
using two orthogonal units, may lead to more accurate results,
but would unacceptably constrain the motion of the patient.

Although fluoroscopy images are only two-dimensional
(2-D) images, we can recover all six degrees of freedom (DOFs)
of the pose; i.e., three translational ( ) and three rotational
angles (roll, pitch, yaw). We can do this if we have an accurate
geometric model of the object (implant component). Also it
is important to have an accurate model of the imaging sensor,
from which the image was formed. This is based on the fact
that, given the model of the object and the model of the image
formation process, the appearance of the object in the image
can be predicted (Fig. 4). The predicted image is dependent on
all six DOFs of the pose. For example, moving the object away
from the sensor reduces the size of the object in the image (for a
perspective projection imaging model). By searching the space
of possible poses, one can find the pose for which the predicted
image best matches the actual image of the object. When the
poses of both the femoral and the tibial implant component
models have been determined (with respect to the fluoroscope),
the relative pose between the models can then be calculated. By
repeating this process for each image (or for selected images)
of a fluoroscopic sequence, we can reconstruct the kinematics
of the joint during a complete motion cycle (gait, stair rise,
deep knee bend, etc.).

Challenges that arise in this problem domain include noise,
clutter, occlusions, and low object-to-background contrast.
Clutter arises from extraneous objects in the image with
appearance similar to the implant components. For example,
metal calibration objects [such as the steel ball in Fig. 5(b)] and

Fig. 4. Using a perspective projection imaging model, the silhouette of the
model can be predicted and compared with the observed silhouette in the image.

(a) (b)

Fig. 5. Occlusions and low object-to-background contrast may occur when the
projection of the implant component overlaps (a) the other leg in the image or
(b) another implant.

screws have high contrast, similar to the implant components.
Occlusions and low object-to-background contrast may occur
when the projection of the implant overlaps the other leg
[Fig. 5(a)], or another implant [Fig. 5(b)]. Low object-to-back-
ground contrast may also occur when there is adjacent material
with similar contrast, such as the bone cement next to the
tibial component in Fig. 2. In these cases, it is difficult to
automatically extract a complete contour of the object.

This paper describes a new method for measuring the kine-
matics of TKA knees from single plane fluoroscopy images.
Our method is robust with respect to image noise, occlusions,
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and low object-to-background contrast. Unlike previous work in
this area, we do not require an accurate segmentation of the im-
plant silhouette in the image (which can be prone to errors). In-
stead, we use a direct image-to-image similarity measure, such
as has been used in work on computed tomography (CT)-to-flu-
oroscopy registration [10], [11]. In this approach, a synthetic
fluoroscopy image of the implant in a predicted pose is gener-
ated, and this image is correlated to the original input image.
Although this method avoids explicit segmentation, it can result
in numerous local minima that can lead to false registration so-
lutions. We avoid this problem by using a robust optimization
algorithm (simulated annealing) that can escape local minima
and find the global minimum (true solution). Although we focus
on knees in this paper, the method can be (and has been) applied
to other joints, including hips, ankles, and temporomandibular
joints (TMJ).

The rest of this paper is organized as follows. Section II pro-
vides a review of previous work in this area. Section III de-
scribes our new method in detail. Section IV gives the results of
performance analyses on accuracy, reliability, and convergence
rate. Section V provides a discussion and conclusion.

II. RELATED WORK

The system described in this paper is an example of regis-
tering a three-dimensional (3-D) model to a 2-D image. The
problem of determining the position and orientation (pose) of
a known 3-D object from a single 2-D image is a common
problem in the field of computer vision. Typically, one starts
with a known geometric model of the object, and a known model
of the image formation process. The object is assumed to lie
somewhere in the image, although it is not known which image
features belong to the object of interest, and which features
arise from other objects or structures in the scene (clutter). The
problem is to identify the features that belong to the object of
interest, and estimate the six-DOF pose of that object with re-
spect to the sensor.

There are three approaches for determining the position and
orientation (pose) of a known 3-D object from a single 2-D
image. The first method, used frequently in robotic and ma-
chine vision, is based on identifying individual 2-D features
in the image and matching them to 3-D features on the model
[12]. These are usually point-type features (such as holes, pro-
trusions, or distinctive markings) or line-type features (such as
long straight edges). The correspondence between model fea-
tures and image features can be determined using a tree search
or with a hashing scheme (e.g., Hough transform). However, this
approach is difficult to use in our problem domain because indi-
vidual distinct features are difficult to extract. One reason is that
only the silhouettes or extremal contours of the implant com-
ponents are visible in the X-ray images, with no internal fea-
tures or surface markings showing. Another reason is that the
objects typically have smooth curved surfaces, and there are few
(if any) easily recognizable features along the silhouette (such
as a corner).

The second approach is to match the exterior surface of the
object to the projected silhouette in the image. Methods have

been developed for polyhedral models [13] and objects that can
be represented with a small number of parameterized surface
patches [14]. Other methods precompute a library of expected
silhouettes of the object, or templates [5], [15]. Each template is
created by graphically rendering the object at a known pose. The
input image is then processed to extract a silhouette. The silhou-
ette with the closest match in the library is taken to represent
the pose of the object. Alternatively, a “hypothesize-and-test”
approach can be used, where a pose is hypothesized, a test is
performed to see how well the actual data matches the predicted
data, and an optimization algorithm adjusts the pose as neces-
sary [16]–[18]. The cycle is repeated until there is a close match
between the predicted data and the actual data. This allows a
continuous adjustment of the pose, instead of limiting the ad-
justments to the resolution of a precomputed library. However,
these methods have the disadvantage that the object’s contour
must be accurately segmented from the image. This may be dif-
ficult in some images, due to noise, low contrast, and occlusions.

The third approach is to match the image values directly to a
predicted image of the object. A predicted image is generated of
the object in a hypothesized pose, and the pixel values are com-
pared directly to the values in the actual input image, without
trying to presegment the object from the image. For X-rays,
the predicted images are known as digitally reconstructed ra-
diographs. With this approach, a 3-D volumetric model, rather
than a surface model, can be used. Researchers have matched
3-D volumetric models derived from CT, magnetic resonance
imaging (MRI), or positron emission tomography data to static
X-rays [10] or fluoroscopy images [19], [11]. A variety of
image difference measures can be used [20], such as pattern
intensity [19], gradient difference [11], and cross-correlation
[10]. Since the measures are global in nature, they are robust
to small amounts of clutter and occlusions. Although past
approaches have focused on CT-derived volumetric models,
there is no reason why direct image comparison methods could
not be used for surface models (i.e., implant models). In fact,
this is the approach that we use, as is discussed in Section III.

With all hypothesize-and-test methods, there is a need for an
optimization algorithm to adjust the pose of the object until its
predicted data matches the actual data. Optimization algorithms
search for the best (e.g., minimum) value of a cost function.
Many researchers (e.g., [10], [19]) use a local search algorithm
such as gradient descent. This is fast but is prone to getting
stuck in a local minimum. A hierarchical (i.e., coarse-to-fine)
approach can be used, which improves the likelihood of finding
the global minimum [21]. Nevertheless, the initial guess for the
solution must be fairly close to the actual solution.

Robust optimization algorithms attempt to find the global
minimum of a cost function, even in the presence of local
minima. Typical algorithms in this category include simulated
annealing and genetic algorithms [22], [23]. Although one
cannot guarantee that they will find the global minimum, they
greatly improve the likelihood of finding the global minimum.
The disadvantage of these methods is that they require many
function evaluations (i.e., iterations of the hypothesize-and-test
loop).

One can improve the likelihood of reaching the true solution
by starting from a good initial guess. A priori information can be
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provided manually by an operator; or in some cases, automati-
cally using domain knowledge. For example, when processing
each image in a video sequence, the pose of the object in each
image should be fairly close to its pose in the previous image
(assuming small velocity).

III. DETAILED DESCRIPTION OF METHOD

Our overall approach is to use a robust optimization algorithm
to minimize the error between a predicted and an actual X-ray
image. We avoid explicit presegmentation of the object silhou-
ette in the image, since this may be difficult to perform automat-
ically.

The choice of using a metric based on 2-D measurements
(rather than 3-D) was motivated by the fact that modern com-
puter graphics workstations (such as the Silicon Graphics, Inc.
Octane we used) can very quickly render 2-D images of 3-D ob-
jects at video frame rates, even for highly complex models. By
doing all computations in 2-D image space, we avoid expensive
3-D computations of ray-to-surface distances.

Although we generate a predicted image of the object in a
hypothesized pose, this does not need to be a high fidelity image,
which would be expensive to compute. The reason is that most
of the information is in the location of the projected contour; the
exact values of the image pixels are not necessary to predict.

Our approach incorporates the following elements: 1) an ini-
tialization step; 2) a matching algorithm which evaluates the
match between the observed image and the predicted image
from the current hypothesized pose; 3) a robust optimization al-
gorithm; and 4) a method of supervisory control. These elements
are described in the following sections. Preliminary descriptions
were given in a conference paper [24] and theses [25], [26].

A. Initialization

Prior to performing 2-D to 3-D registration to estimate pose,
we must create geometric models of the objects. Detailed
drawings or CAD models are available for most implants;
another possibility is to digitize a physical prototype using
a laser scanner. The result is a surface model composed of
triangular facets, stored in “Open Inventor” format. Although
piecewise planar, this model can accurately represent smooth
surfaces if enough triangles are used.

The fluoroscope can be modeled by a perspective projection
image formation model, which treats the fluoroscope sensor as
consisting of an X-ray point source and a planar phosphor screen
upon which the image is formed. Although image distortion and
nonuniform scaling can occur, these can be compensated for
by careful calibration (which only needs to be done once for
each fluoroscope). The first step is to estimate any 2-D image
geometric distortion. By taking a picture of a known rectangular
grid of beads, we can estimate a 2-D spatial transform for each
small square subimage that is bounded by four beads. Using
standard techniques in geometric distortion removal (e.g., [27]),
a local bilinear model is used for the mapping, as well as for the
gray level interpolation method. Fig. 6 shows an image of the
calibration pattern, before and after distortion removal.

Once the 2-D distortion has been removed, the effective
source-to-image plane distance (focal length) can be computed

Fig. 6. Fluoroscopic image of calibration grid, before distortion removal (left)
and after (right). Note the rotation and “pincushion” effects visible in the left
image.

Fig. 7. Predicted rendered image of the femoral model (left) and its silhouette
(center). The right image shows an expanded version of the silhouette where
pixels are encoded with their closeness to the contour (within a small band).

by a two-plane calibration grid, with a known displacement
between the planes (e.g., [5]).

In the experiments shown in this paper, a VF-2000 fluoro-
scope was used, from Radiographic and Data Solutions, Inc.
(Minneapolis, MN). Images were captured using a progressive
scan video camera and subsequently digitized to 8 bits and
640 480 pixels using a frame grabber attached to a PC. This
fluoroscope had an image intensifier with a diameter of 12
inches, and a principal distance of 1200 mm. The digital images
were preprocessed by a 7 7 median filter to reduce noise.

B. Matching Algorithm

The matching algorithm compares two images—the pre-
dicted X-ray image and the actual input X-ray image. The
predicted X-ray image is rendered using the implant CAD
model, using an SGI graphics workstation and the Open
Inventor graphics library. Fig. 7(left) shows an example of
a rendered image. Using a self-illumination lighting model,
the model is rendered as completely white against a black
background. The boundary between the white and black
regions is then extracted from this image [Fig. 7(center)]. Next,
a growing operation is performed, which encodes each pixel
within a small distance (3 pixels1 ) of the contour with a score
that is inversely proportional to its distance to the contour.
This allows points that are near to the contour to contribute to
the matching score to an amount that is proportional to their
nearness [Fig. 7(right)].

The second input image is the actual X-ray image taken from
the fluoroscope. Before matching, this image is inverted so that
implant component pixels are white (as in the predicted image).
Then an edge enhancement operation (Sobel) is also performed
(Fig. 8), to estimate the norm of the local image gradient.

The match between the input X-ray image and the predicted
X-ray image is evaluated using weighted combination of two

1This distance was empirically chosen to improve the capture radius of the
algorithm and reduce local minima.
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Fig. 8. Input X-ray image, inverted (left) and gradient image (right).

metrics. The first metric compares the pixel values of the two
images, and the second metric evaluates the overlap of their
contours (edges). Both scores are obtained by multiplying the
two images together, summing the result, and normalizing by
the sum of the predicted image. If is the input X-ray
image [Fig. 8(left)] and is the predicted X-ray image
[Fig. 7(left)], then the intensity matching score is

This score is similar to a cross correlation between the two
images, except that the score is not normalized (since we are
interested in finding the maximum of the score, normalization is
not necessary). We can interpret our matching score as follows:
The model image is a binary image with nonzero values in the
region of the silhouette, and zero values everywhere else. The
intensity matching score is the average gray level intensity of
the image inside the projection of the silhouette of the model.
This score should be high when the projection of the silhouette
covers a bright region in the original image (such as an implant
component).

The contour matching score is similarly calculated. If
is the input edge-enhanced image [Fig. 8(right)] and is
the predicted (expanded) edge image [Fig. 7(right)], then the
contour matching score is:

This score is similar to a cross correlation between the two
edge images. The score is a maximum when the peaks in the
predicted edge image coincide with the peaks in the input edge
image. Our contour matching algorithm is a form of chamfer
matching, commonly used in computer vision [28]. Image edge
points farther than a certain threshold distance from the hypoth-
esized contour are given zero weight, and thus do not contribute
to the matching score. This means that outliers (erroneous data
points) do not affect the resulting fit. This method is similar to
other outlier rejection strategies such as least-median-squares
regression [29] or M-estimators [30].

These two scores are then combined, with the contour
matching value weighted more heavily than the area matching
value. By weighting the contour score more heavily than the

Fig. 9. (Left) Matching score for an implant as its pose is rotated about the
vertical (y) axis, showing two large minima. (Right) A magnified subset of the
curve showing many shallow local minima.

area value, the contour score dominates when the CAD models
are close to the true solution. The weights of the intensity
and contour scores were set to and , respectively.
These weights were determined experimentally to achieve good
results on typical images2 . The resulting total matching score,
or similarity measure, produces a distinct minimum when the
CAD model is exactly aligned with the image of the implant
in the input X-ray image.

C. Optimization

The choice of optimization algorithm depends on the charac-
teristics of the function space to be searched. Our function space
is six-dimensional (corresponding to the number of DOFs in the
model pose) and contains numerous local minima.

Fig. 9 is a one-dimensional exhaustive plot of the matching
score for an in vivo image (Fig. 2) where the pose of the
femur model was rotated about the vertical ( ) axis. At each
hypothesized position, the matching score was recorded. Note
the two large minima and many smaller local minima. The
global minimum (the correct solution) is the deeper of the
two large minima. The other large minimum is caused by the
symmetry of the model (a femoral knee component), causing
the silhouette to be very similar for two different orientations.
The small minima are caused by the nature of the matching
function—as the model is translated or rotated across the
image, points constantly enter and leave the support set.

Fig. 10(a) shows the femoral implant in the correct overlay
position, which corresponds to the global minimum. Fig. 10(b)
shows the femoral implant component in the incorrect posi-
tion, which corresponds to the other large minimum in Fig. 9.
Fig. 10(c) shows that the two silhouettes are very similar, but
different. The similarity of the silhouettes is due to the highly
symmetrical shape of the implant.

To avoid these local minima, a robust optimization algorithm
is needed that can find the global minimum. A local search algo-
rithm such as Levenberg–Marquardt will simply find the nearest
local minimum. Possible choices of global optimization tech-
niques include simulated annealing (SA) [31] and genetic algo-
rithms (GA) [23]. We chose SA due to its simplicity of imple-
mentation—GA may be more efficient in terms of the number of
function evaluations required, but both are slow compared with
local search methods.

Our SA algorithm is a modified version of the Nelder–Mead
[30] (downhill simplex) optimization method. A simplex is a
set of seven points where each point represents a possible pose,

2Negative weights are used so that the best fit corresponds to a minimum of
the objective function.
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along with the value of the function space at that point. The al-
gorithm iteratively perturbs the worst (highest) point of the sim-
plex, in the direction of a lower score. Gradually, after many
iterations, the entire simplex converges upon a minimum of
the function space. Generally, this method converges upon the
closest local minimum; however, it may randomly escape small
local minima based upon the size of the perturbation that it
makes.

Simulated annealing employs a virtual temperature in order
to escape larger local minima. Specifically, the algorithm adds
or subtracts a positive, logarithmically distributed random vari-
able, proportional to the temperature, to the function values in
the simplex. Effectively, the temperature makes some solutions
appear more favorable than they actually are. As the tempera-
ture iteratively decreases, this possibility of “uphill” movement
decreases as well. The temperature is lowered according to a
defined schedule. In our application, the virtual temperature is
decreased every 40 iterations by multiplying the current temper-
ature by 0.99. Periodically, the simplex is expanded to enable
the algorithm to test more distant solutions. By slowly lowering
the virtual temperature in this manner, the algorithm can escape
local minima. On a Silicon Graphics Octane workstation, one
iteration takes about 0.2 s. The algorithm automatically termi-
nates when the difference between the best and worst points in
the simplex is less than a small threshold.

Fig. 11 shows the error score as a function of the number of it-
erations, for the same image used earlier. The upper curve shows
the instantaneous score at each iteration, as the optimization al-
gorithm tests nearby model poses to see if the score will improve
in various directions. Most of these hypothesized poses are re-
jected since they result in higher (worse) scores. Note the oc-
casional increases in error score when the simplex is expanded.
The lower curve is the “best ever” score found so far, and mono-
tonically decreases. Also shown is the temperature, and snap-
shots of the model overlaid on the image.

D. Supervisory Control

A graphical user interface (GUI) was developed using the Sil-
icon Graphics RapidApp user interface builder tool (Fig. 12)
that allows the user to visualize and control the model fitting
process. Visualization is accomplished by displaying the model
as an overlay on the X-ray image, and by continuously updating
the model’s position with the current optimization solution. The
GUI allows a user to initialize the model pose prior to opti-
mization, which speeds convergence to the correct solution. Al-
though the optimization algorithm can escape most (shallow)
local minima, it occasionally gets stuck in a deeper minimum.
With a large enough temperature the algorithm could even es-
cape these large minima; however, we have found it to be more
efficient to use an interactive approach. In this approach, if the
system gets stuck in an incorrect pose, the user can temporarily
seize control of the model (using the mouse) and move it toward
the correct pose. Releasing the mouse then allows the optimiza-
tion algorithm to resume at the new pose. This initializes the
state vector closer to the solution, saving time by reducing the
number of iterations needed to be performed.

This approach is a form of traded control [32], which is used
in supervised robot control. The philosophy is that the system

(a) (b) (c)

Fig. 10. Overlays corresponding to the two large minima in the previous
figure. (a) Femoral implant in correct pose. (b) Incorrect pose. (c) Difference
in silhouettes.

Fig. 11. Matching score as a function of the number of iterations, on the same
fluoroscopy image.

Fig. 12. The graphical user interface allows the user to easily visualize and
control the progress of the model fitting process.

incorporates the best of both approaches. It combines the speed
and precision of the computer with the common sense and do-
main knowledge of the human. The resulting system is both ef-
ficient and reliable.

Often the user can easily detect that the system has found a
local minimum (incorrect solution), because the overlay of the
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model does not fit the silhouette in the image. In other cases,
the user can see that the resulting femur-tibia pose is physically
impossible and/or biomechanically implausible. For example,
Fig. 13 shows a tibia model that is in an incorrect pose. By ob-
serving the relative femur-tibia pose from the front, it is obvious
that the models intersect (i.e., a physical impossibility). Looking
at the models from the top, the femur has an excessive rotation
with respect to the tibia (i.e., biomechanically implausible). In
such cases, the user can move the model closer to the correct
solution and restart the optimization algorithm.

IV. PERFORMANCE RESULTS

The registration method has been used to determine knee
kinematics in vivo in numerous studies involving hundreds of
patients and dozens of implant models [33]–[36]. Our results
are consistent with measurements made by other methods, in-
cluding roentgen stereophotogrammetry [37], [38], intercortical
pins [39], [40], and quasi-static MRI [41], [42].

In this section, we give the results of tests performed to asses
the accuracy and repeatability of the method on in vivo and ca-
daver images. Many previous analyses of 3-D to 2-D registra-
tion methods have used “clean” images of objects outside the
body, or synthetic data [5], [16], [18]. However, to be sure of
testing the method fairly, the images should be as close as pos-
sible to those that would be clinically available. Specifically, the
implant components should be imaged within an environment of
bone and soft tissue, whose presence can affect the accuracy of
the results.

A. Convergence Analysis

Experiments were conducted to analyze the convergence
properties of the algorithm. First, a representative fluoroscopy
image was selected, containing a knee implant [Fig. 14 (left)].
Surface models were created for the femoral and tibial compo-
nents. The best poses of the models were found (in terms of the
matching score), and are shown in Fig. 14 (center).

Note that these poses are not a “gold standard,” because we do
not know the true poses of the models from another, independent
measurement method. They are simply the poses which yield the
best value of the similarity measure. Therefore, the experiments
described in this section do not test registration accuracy, but
rather the ability of the search strategy to find the optimum value
of the similarity measure. Accuracy against a gold standard is
addressed in the next section.

Tests were performed to measure how well the registration
algorithm could find the best pose of the femoral component,
when it was run from different starting conditions. Four classes
of starting conditions were designated, representing different
amounts of deviation of the initial pose to the best pose. Class
1 represents the smallest amount of initial deviation, and Class
4 the largest. The classes correspond to the quality or accuracy
of the a priori knowledge of the pose. The actual initial devia-
tion values for each parameter are shown in Table I. To set these
values, we performed an informal test. A human operator was
asked to manually position the femoral component model to best
align the graphical overlay with the image. Class 3 represents
the approximate deviation we measured after a few seconds of

Fig. 13. (Left) Improper registration of a tibial model. (Center) Viewing from
front, component interference is visible. (Right) Viewing from top, excessive
rotation is visible.

Fig. 14. (Left) Fluoroscopy image used for convergence analysis. (Center)
Best model poses, in terms of the matching score. (Right) Initial starting pose,
for a “Class 4” initial deviation.

manual positioning. Class 2 represents the deviation after about
a minute of careful manual adjustment. Class 1 and Class 4 rep-
resent even more extreme starting conditions—either very ac-
curate or very inaccurate initial placement, respectively. An ex-
ample, Fig. 14 (right) shows the model in its initial starting pose,
for one of the Class 4 starting poses.

1) Results—No Noise or Occlusion: Thirty runs were made
for each class. The algorithm was allowed to run unsupervised to
completion. For each run, the difference between the final pose
and the best pose was recorded. The root mean square (rms) final
differences are shown in Table II.

To test the effect of the random search component of the sim-
ulated annealing optimization algorithm, we repeated the runs
with the initial temperature set to zero. Effectively, with tem-
perature equal to zero, the algorithm becomes a simple gradient
descent algorithm that just traverses downhill to the nearest local
minimum. We found, as expected, that the algorithm quickly fell
into a local minimum near its starting point. Thus, the algorithm
did not improve the initial pose estimate significantly.

A closer look at the results from full temperature optimization
shows that certain runs had large differences between the final
pose and the best pose. Nearly all of these incorrect final poses
were the “reflected” pose shown in Fig. 10(b). As described
in Section III-C, this corresponds to a large local minimum in
the objective function space, due to the symmetrical shape of
the implant component. This incorrect pose is rotated approx-
imately 35 from the correct pose, primarily about the vertical
( ) axis.

Since these final differences are very large, they are easy
for a human to detect. For example, such an erroneous pose
would imply a knee configuration that was biomechanically im-
possible, or it would result in the two components intersecting
in space. Therefore, in practice when such a result occurs, the
human operator pushes the model away from that pose and con-
tinues the optimization algorithm. This is usually enough to let
the model settle into the correct pose. The percentages of times
that large (outlier) final differences occurred in Class 1, Class
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TABLE I
VALUES OF INITIAL STARTING POSE PARAMETERS

TABLE II
RMS DIFFERENCES BETWEEN FINAL POSE AND BEST POSE

TABLE III
RMS DIFFERENCES BETWEEN FINAL POSE AND BEST POSE, IF OUTLIERS (OBVIOUS FAILURES) ARE REMOVED

2, Class 3, and Class 4 trials were 0%, 3%, 33%, and 50%, re-
spectively.

If we remove these obvious failures from the results, the al-
gorithm achieves results that are very close to the correct pose.
Table III shows the rms difference between the final pose and
best pose, as a function of the initial deviations. The magnitude
of the final differences is almost independent of the initial devi-
ation.

Thus, given a small amount of user supervision and interven-
tion, the optimization algorithm can reliably find poses that are
very close to the optimal (as measured by the matching score),
even from starting poses with large initial deviations.

Note that the final difference is higher for translation in the
out-of-plane direction (the axis) because the registration
method is much less sensitive to displacements in that direction.
Any single-plane registration method will be less accurate
along the line of sight direction. If registration were performed
with multiple viewing directions, using say, bi-plane or stereo
fluoroscopy, this would reduce the axis error. However,
in some applications the larger axis error is acceptable.
For example, physical constraints in the knee joint prevent
large translational motion between the femur and tibia in the
medial-lateral direction. If we view the knee joint in the sagittal
( ) plane, then the relative translational motion in the
direction should be small and is not of interest in clinical
applications.

2) Results—Noise and Occlusion: To show the robustness
of the method, we conducted additional tests using images with
added noise and occlusion. We added synthetic Gaussian dis-
tributed noise to the image used in the pre-
vious section (Fig. 2). This is much higher that the observed
measured pixel intensity noise on our fluoroscope and image
capture equipment, which is approximately three gray levels.
The noisy image is shown in Fig. 15.

To test the effect of occlusion and low foreground-to-back-
ground contrast, we next generated an image with simulated
occlusions, by combining an image of another knee with the
test image used in the previous section (Fig. 16). Such occlu-
sion effects occur frequently in actual practice due to the pa-
tient swinging one leg in front of the other during gait [see, for
example, Fig. 5(a)]. The net effect is to drastically reduce the
contrast between the object of interest (the implant component)
and the background.

We next re-ran the same convergence tests on the noise image
and the occlusion image. For each image, thirty runs were done
for each of the four classes of starting poses. The results show
that the convergence was not greatly affected by noise or occlu-
sion. Fig. 17 shows the percentage of runs that converged to the
best pose (or a close vicinity of the best pose) instead of the false
local minimum. In fact, convergence was slightly better for the
noise and occlusion images, indicating possibly that a multi-res-
olution approach could improve robustness.
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Fig. 15. The test fluoroscopy image with a large amount of added noise.

Fig. 16. A simulated occluded image (left) was created by combining the test
image in Fig. 2 with an actual image of another leg (right).

Fig. 17. The percentage of runs that converged to the correct pose instead of
the false local minimum.

For those runs that converged to the correct pose, the final
pose differences were somewhat higher in the noise and occlu-
sion images. Table IV shows the rms magnitude of the differ-
ence between the final pose and best pose, in translation,

translation, and orientation. These were almost independent
of the starting pose, so only the results for the “Class 4” initial
poses are shown.

The (out-of-plane) difference was significantly higher
for the occlusion image than for either the noise image or the
no-noise image. A close look at the results showed that the
registration method consistently estimated the position of
the implant as being too far away. In other words, there was
a consistent bias in the results. The position is primarily
determined by the apparent size of the silhouette in the image.
Since in the occlusion image only a portion of the silhouette
is visible, this may degrade the accuracy of the position
computation.

B. Accuracy Tests

The previous section showed that the registration method can
reliably find a pose that is very close to the optimal (as measured

by the matching score), even from starting poses with large ini-
tial errors. However, a separate issue is the absolute accuracy of
the resulting pose, in terms of 3-D translation and rotation. We
performed tests on a cadaver knee because it provided the same
imaging effects of bone and soft tissue that would be found in in
vivo images. The resulting images were completely equivalent
to in vivo images except that the objects were not moving while
the images were taken (however, if the exposure time is small,
motion blur is not a factor even for moving objects). We also
took images over a wide range of flexion and viewing angles, to
simulate as closely as possible the range of imaging conditions
that are actually used in clinical X-ray fluoroscopy images.

In order to perform a test of absolute accuracy, we need a
source of known “ground truth” pose data. Ideally, the ground
truth data should be very accurate—at least as accurate as
the method being tested, and hopefully much better. Some
researchers have located fiducial markers (beads) in X-ray
images to obtain ground truth [19], [11]. However, since
our registration method itself is also based on X-rays, this
is not really an independent method. Other researchers used
mechanical positioning systems to place the objects at a known
relative pose [5], [16]. However, this method is difficult to use
on implants located within the body. Also, there are difficult
issues in calibrating the mechanical positioning system itself,
such as determining axes of rotation and the position of the
components on the actuators.

Instead, our approach was to physically measure specific
points on the implant to determine ground truth. In cadavers,
it is possible to expose a portion of the surface of the implant
so that it can be touched by a hand-held probe. The probe can
be automatically tracked using an optical sensor, and the 3-D
coordinates of the probe tip can be recorded by a computer.
Given a sufficient number of registration points measured
in this way, the pose of the implant can be estimated. This
pose can be compared with the pose that is estimated from
fluoroscopy images, as measured by our registration method.

One problem with obtaining ground truth is that it is difficult
to know the precise position and orientation of the fluoroscope
coordinate system with respect to the coordinate system of the
optical sensor. Even small errors in measuring this alignment
would result in large errors in the ground truth data, which
would dwarf the errors from our registration method. There-
fore, we instead chose to concentrate on measuring the relative
pose between two implants (i.e., femoral and tibial knee
components), and compare the relative pose obtained using the
fluoroscopy registration method with the relative pose obtained
from the optical sensor. This avoided the need to calibrate the
fluoroscopy sensor with respect to the optical sensor. Also,
the relative pose between two implant components is often
the quantity of interest in applications such as measuring the
kinematics of the knee. However, one should note that our
test would unable to detect a systematic registration error that
would cancel out when computing relative pose.

1) Experimental Data Collection Procedure: Coordinate
reference frames were defined for each object in the data col-
lection procedure (Fig. 18). There are two implant components,
denoted Femur and Tibia . The pose of each implant is
measured with respect to an optical sensor Opto , and also
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TABLE IV
RMS VALUES FOR DIFFERENCES BETWEEN THE FINAL POSE AND BEST POSE, USING “CLASS 4” STARTING POSES

with respect to the fluoroscope Fluoro . From these measured
poses, the relative pose of the femur to tibia is derived.

Shallow registration holes (5/64 ) were drilled into the
femoral and tibial components of a posterior cruciate retaining
knee implant (6 in the tibial component, 10 in the femoral com-
ponent). The holes were distributed throughout the components
in a noncollinear arrangement (Fig. 19). These holes were used
to establish a reference frame for each implant component
using the optical sensor.

The next step was to create a surface model of the implants.
The implants were laser scanned using a Digibot III machine
(DIGI-BOTICS Austin, TX), which recorded a large number of
3-D points on the object’s surface. A polygonal surface model
was then created, resulting in approximately 12 000 polygons
for the femoral component, and 28 000 for the tibial component
(Fig. 20). Although CAD models of the implants were available,
the reason we created these “as is” models, was to determine the
exact locations of the registration holes in the implant model
coordinate reference frames.

The optical sensor used was an Optotrak 3020 system
(Northern Digital Inc., Waterloo, Canada), which tracks in-
frared light emitting diodes (LEDs) by three fixed linear array
charged coupled device (CCD) cameras [Fig. 21(left)]. The
distance between the outermost two cameras is approximately
90 cm. The Optotrak sensor was used to track a handheld probe,
consisting of 6 LED markers rigidly mounted on one side of a
planar aluminum rectangular grid [Fig. 21(right)]. Attached to
the probe tip is a 2 mm diameter ball at a known position with
respect to the grid. Thus, by locating the 3-D coordinates of the
LEDs, the 3-D coordinates of the probe tip can be computed.
By placing the probe tip in a registration hole, the location
of the registration hole with respect to the Optotrak can be
determined.

We measured the uncertainty of the probe tip location by
recording the inter-point distance between every pair of registra-
tion points on each component 99 times. Since the distance be-
tween any two-registration points should be fixed, any deviation
must be due to measurement noise. The total measured variance
of the distance between any two points was mm .
This variance is the sum of the variance in locating point and
the variance in locating point . Therefore, the variance in
locating a single point is mm , and the standard
deviation of a single point is mm.

The poses of the femoral and tibial components with respect
to the Optotrak sensor were calculated using the “absolute
orientation” algorithm [43]. Given the measured 3-D data
points from the Optotrak ,

Fig. 18. Principal coordinate frames involved in the accuracy analysis tests.

Fig. 19. PCR <Author: Please define acronym PCR?> knee implant
components, showing registration holes.

Fig. 20. The surface models created by laser scanning, showing the position
of the registration holes.

Fig. 21. (Left) Northern Digital Optotrak 3020 position tracking sensor.
(Right) Optotrak probe, consisting of six LED markers that are tracked by the
sensor.



IE
EE

Pr
oo

f

MAHFOUZ et al.: REGISTRATION OF 3-D KNEE IMPLANT MODELS TO 2-D FLUOROSCOPY IMAGES 11

and the corresponding 3-D points on the model
, the algorithm finds

the pose of the model that minimizes the least squared
error between the measured 3-D point locations and the
predicted 3-D point locations. The result is the pose of
the model with respect to the Optotrak, expressed as a
6-vector , where
is the translation of the model and represents
the rotation angles about the , , and axes. The pose can
also be expressed as a 4 4 homogeneous transformation
matrix [44].

The Optotrak probe was used to measure the ( , , and
) coordinates of the registration holes in the femoral and

tibial components while simultaneously video recording the
X-ray fluoroscopy (Fig. 22). Using this data, we estimated
the pose of the femur and the tibia
separately with respect to the Optotrak sensor. Finally, the
relative pose of the femur with respect to tibia in the Optotrak
sensor coordinate system was calculated, using the equation

. This represents the “ground
truth” relative pose, by which we can compare the results from
our registration method.

The cadaver knee was manipulated into 11 different angles of
flexion, ranging from approximately 0 to approximately 120 .
Three views were taken at each flexion angle, called “frontal,”
“sagittal,” and “oblique,” according to the predominant viewing
angle with respect to the fluoroscope (Fig. 23).

Thus, there were a total of 33 distinct poses. Each pose
was measured three times using the Optotrak sensor, and also
captured using video fluoroscopy. The 3-D to 2-D registration
system estimated the pose of the CAD models from the
fluoroscopy images. A human operator placed the models
in an initial position, and the system subsequently operated
fully autonomously without human intervention. The result
was the pose of each implant component with respect to the
fluoroscope, and . The relative
pose of the femur with respect to the tibia was then calculated
using the equation .

2) Accuracy Analysis: We had two sets of relative poses
of the femur with respect to the tibia, one computed by
the 3-D-to-2-D registration system and the
other the “ground truth” pose as derived from Optotrak data

. Each pose represented a pair of implants,
where the absolute location of the pair in space was unknown,
but the relative pose between them was known. We transformed
each pair so that the tibia of each was co-located and aligned
with the origin, and looked at the resulting locations of the fe-
murs (Fig. 24). Ideally, if the two relative poses were identical,
the two femoral components should be co-incident. Thus, the
relative pose between the two femoral components was the
error between the two sets of measurements. The relative pose
between the two femoral components was computed using

.
This represented the difference (or error) between the two

sets of results—one from our registration system and the other
from the ground truth. The relative pose consisted of a transla-
tion error and a rotation error. Before analyzing these errors, we
first rotated them into the coordinate system of the fluoroscope,

Fig. 22. The Optotrak probe was used to determine the location of the
registration points.

Fig. 23. Examples of fluoroscopy images from the frontal, sagittal, and
oblique viewing angles (left to right).

Fig. 24. To compare the two sets of femur-to-tibia poses, the tibias are exactly
aligned and the relative pose between the femurs is computed.

because we expected that there would be a dependency of the
translation error with the fluoroscope axis (note that this ro-
tation does not change the magnitude of the errors, only their
directions).

As previously mentioned, the 3-D to 2-D registration system
operated fully autonomously, after initial model placement by
the operator. The optimization process was allowed to converge,
and the pose results were recorded without any adjustment or in-
tervention. However, in actual operational practice, the results
are always reviewed by a human operator to detect any large
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TABLE V
RMSEs BETWEEN POSES DERIVED FROM OUR REGISTRATION METHOD AND THE OPTOTRAK-DERIVED RESULTS.

TABLE VI
MEANS AND STANDARD DEVIATIONS OF OBSERVED ERRORS. THE THIRD COLUMN GIVES THE ESTIMATED STANDARD DEVIATION OF

ERRORS OF POSES DERIVED FROM THE OPTOTRAK MEASUREMENT SYSTEM.

errors, caused by the system finding a local minimum. These
errors are usually obvious because they manifest themselves as
visible discrepancies between the graphical overlay and the sil-
houette in the underlying image. When such a large error occurs,
the operator can simply “nudge” the model away from its current
pose and toward the correct solution. The optimization process
then resumes and can subsequently find the true solution (global
minimum) on its own. We reviewed the results obtained by the
registration system and found one (a sagittal view) that had a
large registration error. Since in practice an operator would de-
tect this, we removed this pose from the results.

The rms values of the final registration errors are shown in
Table V. Results are given for each of the three views separately,
as well as for the combined set of views. Note that error is signif-
icantly higher for translation along the axis (the direction per-
pendicular to the image plane) because the registration method
is much less sensitive to displacements in that direction.

We can also look at the errors about the individual axes.
Table VI shows the means and standard deviations of the errors
about each of the axes, for the combined set of views. Clinically,
these axes can be interpreted as follows. The three translations
are the anterior/posterior (corresponding to translation along
the axis of the tibia), inferior/superior (corresponding to
translation along the axis of the tibia), and medial/lateral
(corresponding to translation along the axis of the tibia). The
three rotations are abduction/adduction (rotation about the
axis of the tibia), internal/external (rotation about the axis of
the tibia), and flexion/extension (rotation about the axis of
the tibia).

The differences between the two methods are due not only
to the errors in our process, but also to any errors in the Opto-
trak-derived measurements. Thus, these numbers represent an
upper bound on the error on our ability to measure relative pose.

However, we know that the Optotrak measurements have signif-
icant uncertainty. As described in Section IV-B1, the observed
noise in measuring points with the Optotrak probe was 0.2893
mm. Given this number, the uncertainty of the Optotrak poses
can be analytically derived, using the method of propagation of
errors [45], [46]. These values are shown in the third column of
Table VI.

Note that errors in the Optotrak data may account for a large
part of the observed error in the test of our registration method.
If the errors from our registration system and the errors from
the Optotrak system are uncorrelated, then we could subtract
the contribution due to the Optotrak from the measured errors,
to give a more realistic estimate of the error in our process. How-
ever, we did not investigate whether these errors are truly uncor-
related.

V. DISCUSSION

This paper has described a new method for measuring the
kinematics of TKA knees from single plane fluoroscopy im-
ages. This method is robust with respect to image noise, oc-
clusions, and low object-to-background contrast. We use a di-
rect image-to-image similarity measure, taking advantage of the
speed of modern computer graphics workstations to quickly
render simulated (predicted) images. As a result, we do not re-
quire an accurate segmentation of the implant silhouette in the
image (which can be prone to errors). The disadvantage of this
method is that it can result in numerous local minima that make
it difficult to find the correct solution. We avoid this problem
by using a robust optimization algorithm (simulated annealing)
that can escape local minima and find the global minimum (true
solution). Although we focus on knees in this paper, the method
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Fig. 25. Applications of the registration system to hips, ankles, and TMJ
implants (left to right).

can be (and has been) applied to other implanted joints, in-
cluding hips, ankles, and TMJ (Fig. 25).

Another advantage of the direct image-to-image similarity
measure is that it allows for future extension of this work to non-
implanted joints and registration of other organs besides bone.
For nonmetallic objects, internal details will be visible in the
X-ray images, and not just a black silhouette. This will allow
prediction of the intensities inside the object silhouette, and pos-
sibly lead to more accurate prediction and registration. Prelim-
inary work has already been done to extend the method to reg-
istering the bones of the normal knee [47].

Convergence tests showed that the registration method can re-
liably find poses that are very close to the optimal (as measured
by the matching score), even from starting poses with large ini-
tial errors. The rms deviations from the optimal pose were ap-
proximately 0.4 (total angular error) and 0.1 mm of translation
(in the plane). RMS deviations were somewhat larger in
the translation direction (up to 1.4 mm), because the registra-
tion method is much less sensitive to changes in that direction.
We also showed that the method is robust with respect to image
noise and occlusions. However, a small amount of user super-
vision and intervention is necessary to detect cases when the
optimization algorithm falls into a local minimum. Intervention
is required less than 5% of the time when the initial starting pose
is reasonably close to the correct answer, but up to 50% of the
time when the initial starting pose is far away.

Accuracy tests were performed on cadaver images that were
very similar to in vivo clinical X-ray fluoroscopy images, to
allow a fair assessment of the algorithm. A completely indepen-
dent method using an optical sensor was used for determining
the ground truth, unlike other work that uses ground truth de-
rived from X-ray data. The results showed that our registration
method is highly accurate for measuring relative pose. With the
exception of the translation, the overall rms error difference
in translation was approximately 0.65 mm, and the rms error in
rotation was approximately 1.5 .

Although ideally the ground truth data should be much more
accurate than the system being tested, in our case the ground
truth data (derived from an Optotrak sensor) was comparable in
accuracy to the system being tested. Therefore, the measured er-
rors contain contributions from both the errors due to our system
and the errors due to the Optotrak. We analytically estimated
the contribution of the error in the relative pose measurement
due to the Optotrak and showed that it is a significant fraction
of the measured error. For example, the standard deviations of
the measured translation errors in the plane were approx-
imately 0.45 mm, and the estimated standard deviation due to

Optotrak was approximately 0.35 mm. Similarly, the standard
deviations of the measured rotation errors were approximately
0.9 , and the estimated standard deviation due to Optotrak was
approximately 0.5 . Thus, the Optotrak may be a large contri-
bution to the total observed error. In our analytical model, we
assumed independent, normally distributed errors in measured
point locations. This does not take into account systematic or
correlated errors.

We note that the accuracy of the registration results de-
pends on having accurate geometric models of the implant
components, as well as good calibration of the fluoroscope
and imaging process. Finally, in our tests, we used stationary
knees, unlike clinical fluoroscope sequences in which the knee
may be moving. We have performed experiments with moving
knees and have seen no difference in the results, but we have
not tested extremely fast motions.

Suggestions for future research include: 1) using a more effi-
cient optimization algorithm than simulated annealing; 2) de-
termining whether the use of biplanar fluoroscopy yields re-
sults that are significantly more accurate than single plane flu-
oroscopy; and 3) measuring the sensitivity of the registration
method to errors in calibrating the fluoroscope (the sensitivity
of a similar calibration method was analyzed in [48]).

Finally, the relative weights in our matching score function
(giving the relative importance of the region score versus the
contour score) have fixed values, regardless of the object-to-
background contrast. However, in images with low contrast, the
magnitude of the gradient will change, and will affect the con-
tribution of the contour score. It is possible that better perfor-
mance could be achieved by dynamically adjusting the weights
depending on the image contrast.
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