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3-D Motion and Structure Estimation Using Inertial Sensors 

and Computer Vision for Augmented Reality 

Abstract 

A new method for registration in augmented reality (AR) was developed that 

simultaneously tracks the position, orientation, and motion of the user’s head, as well as 

estimating the three-dimensional (3-D) structure of the scene.  The method fuses data from head-

mounted cameras and head-mounted inertial sensors.  Two Extended Kalman Filters (EKF) are 

used; one of which estimates the motion of the user’s head and the other that estimates the 3-D 

locations of points in the scene.  A recursive loop is used between the two EKFs.  The algorithm 

was tested using a combination of synthetic and real data, and in general was found to perform 

well.  A further test showed that a system using two cameras performed much better than a 

system using a single camera, although improving the accuracy of the inertial sensors can 

partially compensate for the loss of one camera.  The method is suitable for use in completely 

unstructured and unprepared environments.  Unlike previous work in this area, this method 

requires no a priori knowledge about the scene, and can work in environments where the objects 

of interest are close to the user. 

 

Index terms:  Augmented reality, pose estimation, registration, Kalman filter, structure 

from motion, computer vision, inertial sensors 
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1 Introduction 

This paper describes a new method for registration in augmented reality (AR) that 

simultaneously tracks the position, orientation, and motion of the user’s head, as well as 

estimating the three-dimensional (3-D) structure of the scene.  The method is suitable for use in 

completely unstructured and unprepared environments.  Unlike previous work in this area, this 

method requires no a priori knowledge about the scene, and can work in environments where the 

objects of interest are close to the user. 

The term “augmented reality”, as used in this paper, refers to systems that draw visual 

overlays on top of the user’s view of the real world (see (Azuma 1997) for a survey).  This is 

often accomplished using see-through head-mounted displays (HMD’s), although it could 

include hand-held devices.  The virtual objects are displayed such that they are registered with 

corresponding real world objects, to give the sense that the virtual and real objects co-exist in the 

same space.  To preserve this illusion, the virtual objects must be accurately registered to the real 

world, even as the user moves about the scene.  This requires accurate sensors to measure the 6 

degree-of-freedom (DOF) position and orientation (pose) of the user’s head in real time. 

In this paper, we are particularly interested in environments that are unprepared, in the 

sense that we have not pre-placed sensors, markings, or other objects to aid in registration.  Also, 

we may have no a priori knowledge about the environment, in terms of the types of objects that 

are present or their locations.  These are characteristics of many potential AR applications in 

maintenance, navigation, military, and law enforcement. 

As an example, consider a scenario where a maintenance worker, wearing an AR system, 

enters an unfamiliar room to fix a piece of equipment.  The AR system would automatically 

track the pose of the worker’s head in the room, with respect to some arbitrary (but fixed) origin 
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in the room.  Image snapshots could be sent to a remote expert, who could annotate the piece of 

equipment with text or graphics.  These annotations would be fixed in the coordinate system of 

the room, so that they remained registered with the object of interest.  The requirements for this 

“tele-maintenance” scenario are similar to many other potential applications of remote 

collaboration. 

Tracking the user’s head in unstructured environments precludes the use of sensors that 

require pre-placing instruments, transponders, or landmarks in the scene.  These include most 

mechanical, magnetic, acoustic, and optical sensors (Meyer 1992).  One possible alternative is 

inertial sensors (gyroscopes and accelerometers), but these only provide rate information, not 

absolute pose.  As a result, the derived pose will drift over time.  The orientation drift can be 

corrected by occasional updates from an absolute sensor such as a compass and tilt sensor 

(Foxlin 1996) (Azuma, Hoff et al. 1999).  Also, translation information may be obtained from a 

Global Positioning System (GPS) sensor (Azuma, Hoff et al. 1999).  However, compasses and 

GPS systems may be unreliable indoors. 

A promising alternative is to use head-mounted cameras and computer vision techniques 

to locate and track naturally occurring features in the scene (Neumann and You 1999).  The pose 

of the camera, as well as the positions of the features in 3-D, can be estimated from the 

projections of the features in the images. 

However, computer vision alone may not be sufficient to meet the demands of accuracy, 

reliability, and real-time operation needed in AR systems.  Computer vision algorithms are 

computationally intensive and it may be difficult to produce results at a rate needed to keep up 

with rapid head motion.  Also, features are sometimes not detected due to occlusions, lighting 

changes, or motion blur.  Therefore, a hybrid system, incorporating multiple sensors, will 
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probably be necessary (You, Neumann et al. 1999).  For example, inertial sensors would 

complement head-mounted cameras.  Computer vision would provide absolute pose information, 

while the inertial system would provide pose estimates in between vision updates and when 

vision data was not available.  Such a sensor suite would still be suitable for use in unstructured 

environments. 

The main issues we address in this paper are as follows: 

 How can we simultaneously estimate both the 3-D positions of naturally occurring features, 

as well as the pose of the head, without any a priori information?  It is relatively 

straightforward to compute pose from visual observations, if one knows the true 3-D 

locations of observed features (see, for example, (Hoff, Lyon et al. 1996), (Sharma and 

Molineros 1997)).  It is also relatively straightforward to compute the 3-D locations of 

observed features if one knows the true motion of the camera (see, for example, (Hoff and 

Sklair 1990), (Shekhar and Chellappa 1992), (Bhanu, Das et al. 1996)).  However, since we 

don’t know one before the other, we must compute both simultaneously. 

 How can we model the dynamics of the user’s motion, and estimate this from sensor (vision 

and inertial) data?  A motion model is needed to predict the future pose of the head.  This can 

greatly improve dynamic accuracy (Azuma and Bishop 1994), and also improve the 

efficiency of the computer vision system, by predicting the locations of features in the 

images. 

 How can we fuse vision and inertial sensor data together, when each may be obtained at 

different update rates? 

The main contribution of this paper is the description of a method that addresses the 

issues described above, and the presentation of results of testing our algorithm implementation 
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on synthetic and real data.  We do not address in this work issues such as detecting and tracking 

the visual features, sensor calibration, and real-time implementation issues.  Most of the material 

in this paper comes from the M.S. thesis of one of the authors (Chai 2000). 

The remainder of this paper is organized as follows.  Section 2 provides a background on 

previous related work, and sets the context of our own work.  Section 3 describes the algorithm 

that was developed.  Section 4 describes our experimental augmented reality system that was 

used to test the algorithm, as well as the software design.  Section 5 illustrates the application of 

the method to various synthetic and real data sets, using off-line (non real-time) processing.  

Finally, Section 6 provides a discussion. 

2 Previous Work 

The problem of estimating self motion and self pose has been well studied in the robotics 

and computer vision research communities, and more recently, in the AR community.  Again, we 

are most interested in approaches that do not modify the environment, and make no a priori 

assumptions about the environment.  

2.1 Mobile Robotics 

In the mobile robotics field, many approaches have been developed to support navigation 

in unstructured environments (Borenstein, Everett et al. 1996).  Often the robot will build a local 

map of its environment and estimate its pose with respect to that map.  Methods have been 

developed to fuse sensor data using occupancy grids (Moravec 1988) and Kalman filters 

(Kriegman, Triendl et al. 1989) (Barshan and Durrant-Whyte 1995).  However, many approaches 

use sensors that are unsuitable for AR applications, due to size, weight, and cost.  These include 

high-end inertial navigation systems (INS) (Bhanu, Das et al. 1996) (Sammarco 1994), lidar 
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(Weiß, Wetzler et al. 1994) (Forsberg, Larsson et al. 1995), odometry, sonar, millimeter wave 

radar, etc.  Other approaches take advantage of the fact that the robot’s motion is constrained, for 

example, to lie on a plane (Crowley 1996) or on a road (Dickmanns and Mysliwetz 1992).  In 

AR, however, the user’s motion is unconstrained and not under the control of the AR system. 

2.2 Computer Vision 

In the computer vision field, much work has been done to estimate motion and structure 

from image sequences alone (see, for example, (Tomasi and Kanade 1992) (Morita and Kanade 

1997) (Debrunner and Ahuja 1998) (Soatto and Perona 1998)).  The term “motion” usually refers 

only to the relative pose of the camera between successive images – it does not usually refer to 

the dynamics of the camera’s motion in terms of explicit velocities or accelerations.  The term 

“structure” refers to the 3-D locations of features, assumed to lie on a rigid body.  Here, we focus 

on methods that track a discrete set of features in the image, as opposed to “optical flow” based 

methods that compute a dense velocity flow field across the entire image. 

Although the problem can be solved using a single camera alone, there is an unknown 

scale factor in the resulting estimated camera and point positions.  Some additional information 

is necessary to recover the unknown scale.  This could be data from a second camera (which can 

provide absolute point positions from stereo triangulation), data from an INS, or observation of 

an initial set of landmarks with known 3-D geometry. 

A minimum of five point correspondences between two perspective images is necessary 

to compute motion and structure (Faugeras 1993).  However, the resulting estimates are very 

sensitive to noise in the observed image points (Fang and Huang 1984).  Rather than using only 

two views, a larger number of image frames can be used to improve accuracy.  For AR, we are 
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more interested in recursive techniques, such as the Kalman filter, than batch techniques, due to 

the requirements of real-time operation.   

The Extended Kalman filter (EKF) (Brown and Hwang 1992) has been used by a number 

of computer vision researchers.  Ayache and Faugeras have developed a number of systems that 

compute camera motion as well as the 3-D positions of point and line features (Ayache and 

Faugeras 1988) (Ayache and Faugeras 1989) (Faugeras 1993).  They use separate state vectors 

for each feature to be tracked, as well as the motion of the camera.  Again, “motion” refers only 

to the relative pose of the camera between frames.  Similar work includes that of Matthies and 

Shafer (Matthies and Shafer 1987).  In these works, there is an explicit representation of the error 

of each feature point in the form of a 3-D Gaussian distribution 

Broida, Chandrashekhar, and Chellappa developed an EKF with a dynamic motion model 

that includes position, orientation, angular velocity, and translational velocity.   A single state 

vector was used for the motion as well as the 3-D positions of each of the feature points.  The 

state vector has 3N+12 elements, where N is the number of feature points being tracked.  Since a 

single camera is used, there is still an unknown scale factor.  The authors report that the 

algorithm is sensitive to the accuracy of the initial guess of the state vector. 

Azarbayejani and Pentland (Azarbayejani and Pentland 1995) extended the work of 

Broida, et al, to include estimating camera focal length as well as motion and structure (although 

they do not include translational velocity and acceleration in their state vector).  However, 

instead of using three parameters per point (i.e., XYZ), they use only a single parameter for each 

point – its depth.  This reduces the dimensionality of the problem, at the expense of losing the 

explicit representation of the 3-D uncertainty of each point’s location. 
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2.3 Augmented Reality 

In the augmented reality field, much work has been done recently on registration using 

inertial sensors and head-mounted cameras.  

Foxlin (Foxlin 1996) developed a system to track head orientation using a combination of 

angular rate sensors, inclinometers, and compasses.  He used a Kalman filter, but instead of 

predicting head dynamics, his approach was to estimate the sensor characteristics.  The 

Complementary Kalman Filter (CKF) was used as an error estimator to predict gyroscope biases.  

The integration of the Euler angles was carried out outside of the Kalman filter as a separate step.  

In later work (Foxlin, Harrington et al. 1998), he combined this with accelerometers and 

ultrasonic range sensors to allow translation measurement as well as orientation.  

Instead of estimating sensor characteristics with a Kalman filter, Azuma (Azuma and 

Bishop 1994) took the approach of estimating head dynamics.  He developed a system to track 6 

DOF head pose using angular rate sensors, accelerometers, and an optical tracker.  Three 

separate linear Kalman filters were used to estimate translation, velocity, and acceleration for 

each axis of the head position.  A single EKF was used to estimate head orientation, angular 

velocity, and angular acceleration.   

The previous works used tracking sensors that required placing active targets (powered 

emitters and transponders) in the environment; whereas in many applications it is preferable to 

use passive targets (ambient or naturally occurring signals) (You, Neumann et al. 1999).  Toward 

this end, many researchers have begun using computer vision to sense passive fiducial markings 

in the scene (Mellor 1995) (Uenohara and Kanade 1995) (Hoff, Lyon et al. 1996) (State, Hirota 

et al. 1996) (Sharma and Molineros 1997) (Hoff and Vincent 2000).  If the positions of the 
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fiducials are known a priori, the pose of the camera with respect to the features can be 

calculated.  However, this requires some preparation or knowledge of the environment. 

Recent work by Neumann and You (Neumann and You 1999) used computer vision to 

detect and track natural features in video images.  Point and region features were automatically 

and adaptively selected for tracking, and their 3-D positions were estimated.  The system 

computed the pose of the camera from the observed features, but did not use an explicit model 

for the head motion.  A single camera was used, which would normally yield results that would 

have an unknown scale factor in position.  However, they used an initial set of features with 

known positions to compute the absolute pose of the camera over the first set of frames.  An 

EKF was used to compute the 3-D positions of new features, based on the known poses of the 

camera.  Once the 3-D positions of the new features were known sufficiently accurately, they 

became new fiducials from which to compute camera pose.  This allowed the AR system to 

extend its workspace.   

Finally, Azuma, et al (Azuma, Lee et al. 1999) developed an AR system for outdoor 

applications that used gyroscopes in conjunction with computer vision to achieve accurate 

orientation registration (translation is provided by GPS).  The tracked features were assumed to 

be distant, so that any image motion of the features was presumed due to orientation changes of 

the head.  The observed image motion was mapped into orientation differences and used to 

provide corrections to inertial sensor drift.  A simplified filter was used instead of a true EKF, 

and there was no motion model. 

3 Algorithm Design 

To satisfy our goal of accurate and robust head tracking in unstructured environments, we 

chose to develop a hybrid system consisting of a computer vision system to locate and track 
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natural features in the scene, as well as inertial sensors (gyroscopes and accelerometers) to 

provide pose estimates in between vision updates and when vision data is not available.  We also 

chose to incorporate an explicit model of head motion dynamics, to aid in prediction.  We 

designed the algorithm to accommodate more than one head-mounted camera, although it will 

work with a single camera.  We found that two cameras yielded much improved performance 

over one, as is described later. 

We compute both structure (feature point positions) and head pose and motion 

simultaneously, similar to Broida, et al (Broida, Chandrashekhar et al. 1990), since we cannot 

assume that we have one before the other.  But rather than combining all unknowns into a single 

large state vector, we separate motion estimation and structure estimation into two different 

EKF’s, similar to Ayache, et al (Ayache and Faugeras 1989).  This reduces computational cost.  

However, these two filters are coupled together so that each provides information to the other. 

This work is novel in that we combine motion and structure estimation, vision and INS 

sensors, and an explicit head motion model.  The system uses no a priori information about the 

scene, and can work in scenes where objects are close or distant. We also examine the 

consequences of using either one or two cameras as part of the sensor group. 

In the subsections below, we first describe the head motion estimation filter.  We then 

describe the structure estimation filter, and then the combined (integrated) system. 

3.1 Head Motion Estimation 

The frames of reference are shown in Figure 1. The primary frame is the camera frame 

{C} (which was at the location of right camera in our two-camera apparatus).  We assume that 

the inertial sensors are rigidly mounted with respect to the camera and that the relative pose is 

between {I} and {C} is known.  To simplify the kinematics model of the system below, we set 
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the {I} frame to have the same orientation as the {C} frame.  The world frame {W} is at an 

arbitrary but fixed location in the scene. 

 

{W} 

World Frame 

{C} 

HMD/Camera Frame 

{C} 

Accelerometers/Gyros are  
in frame {I} (same orientation as{C}), 
referenced to {C} by vector  

I
C p 

I
C p 

Position of {C} in{W}: x

Orientation of {C} in{W}: θ 

{I} 

 

Figure 1  Frames of reference. 

Our head motion model assumes constant angular velocity1 and constant translational 

acceleration.  We represent head motion with a 15x1 state vector ( )Thead x,xx,ω,θ,z &&&=  where θ is 

the orientation of the camera frame with respect to the world (we use Z-Y-X Euler angles in this 

case, although quaternions can be used with some modifications), ω is the angular velocity, and 

x,xx, &&&  are the position, velocity, and acceleration of the camera with respect to the world.  By 

combining these into a single state vector, we can represent cross coupling between different 

axes of the motion, as well as between orientation and translation. 

With these states, the discretized system dynamics are as follows (details are in (Chai 

2000)): 

                                                 

1 Empirical data by Zikan, et al (Zikan, Curtis et al. 1994) suggests that this is adequate. 
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where ∆t is the elapsed time since the previous time update, W is the inverse of the Jacobian 

matrix relating the rate of change of the Euler angles to angular velocity, and i
kw  is an unknown 

input corresponding to the disturbance noise.  Notice that with the unknown input equal to zero, 

the position update equations come from the kinetic relationships between position, velocity, and 

acceleration with the assumption of linear acceleration between samples. The equation for θk+1 

comes from a Taylor series expansion of θ(t) where we keep only the first three terms. Thus the 

model is not a dynamic model in the sense of including mass and inertia, but simply is used to 

relate measurements that could depend on either positions, velocities, or accelerations.  The noise 

inputs come from the unknown motion of the user ( 52 , kk ww ), as well as from the linearization 

error.  By grouping signals into vectors in the obvious way, we will use the notation 

kkk w+=+ )(1 zfz .  Using our angle set convention, the matrix W is given by (details are in (Chai 

2000)): 

 ( )















−=

1tansintancos
0cossin
0secsinseccos

,,
βαβα

αα
βαβα

γβαW  (2) 

We have data inputs from three types of sensors: gyroscopes, accelerometers, and 

cameras.  Each type of sensor has associated with it an output equation, which maps the state to 

the sensor output, y = h(z).  The output equations for each sensor are defined as follows.  
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The gyroscopes produce three angular velocity measurements, one for each axis (units 

are rad/s), which are related to θ and θ&  via (Craig 1990): 

 θθWy &)(1−=g  (3) 

The accelerometers produce three acceleration measurements, one for each axis (units are 

mm/s2): 

 





 +×+×+= gpRωpθRωxRy I

CW
CI

CW
C

I
Wa dt

d )()( θ&&&  (4) 

where RW
C is a matrix rotation from the camera {C} frame to the {W} frame, RI

W is the rotation 

from {W} to {I}, and g is gravity. 

The computer vision system measures the image position of a target point in the world, in 

each of the two cameras (units are mm on the image plane).  The cameras are separated by a 

distance d, and have their optical axes aligned.  Using the estimated world-to-camera pose, we 

transform the world point into camera coordinates, and then project it onto the images using the 

perspective projection equations.  Here, f is the focal length of the camera lenses in mm, f
W p  is 

the position of the feature in the world frame, and Corg
W p  is the position of the {C} frame origin: 
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In this filter, the feature point positions are considered to be known inputs.  In actuality, 

they are estimates that come from the structure estimation filter, as described below in the next 

section.  
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Each sensor has sensor noise associated with it.  For example, the camera data 

measurement at sample time k is actually 

 vvk n+= yy  (6) 

where vn  is an unknown noise input associated with the computer vision sensor.  A similar 

relation holds for the inertial data.  The sensor data varies in the amount of sensor noise, and the 

rate at which the data arrives.  Typically, the data rates of the inertial sensors are much greater 

than the computer vision.   

A statistical description of these unknown inputs and sensor noise in the form of a mean 

and covariance is used by the extended Kalman filter to determine the appropriate update 

weightings from the sensor data.  That is, we assume that w and n are zero mean white Gaussian 

sequences with covariance 
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The extended Kalman filter (EKF) updates the state estimate kẑ  and the associated state 

covariance matrix kP  as follows (Brown and Hwang 1992).  The time update equations are 

given by: 
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The measurement update equations are given by:  
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where ky  is the current observation (inertial or camera), kŷ  is the prediction of the sensor output 

given the current state estimate, and kk HA ,  are the gradient of the dynamics equation and 

observation equation respectively at the current state estimate. 

A block diagram of the head motion estimation filter is shown in Figure 2.  We assume 

that the sensors are asynchronous and their noise is independent of each other, so each sensor can 

be incorporated using a separate measurement update.  The filter will perform the time update 

step to project the state from the current time step into the next time step, when either gyroscope 

data, accelerometer data or camera data is available.  Then a measurement update step will be 

followed to update the filter's state according to the new measurement input.  This is a recursive 

process and it will run continuously when the measurement input data is available. 

Gyroscope 
Measurement Update 

Accelerometer 
Measurement Update 

Camera Measurement 
Update 

Time Update 
(performed when 
any sensor data is 

available) 

gy

ay

vy

−−
headhead Pz ,ˆ

headhead Pz ,ˆ

 

Figure 2  Block diagram of head motion filter. 

3.2 Structure Estimation 

Scene structure is represented by a single 3Nx1 state vector ( )TNstructure x,x,xz ,21 K=  

where xi is the 3-D position of the ith feature point with respect to the world and N is the number 
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of points being tracked.  In our work we used up to 5 points.  We assume that the points are 

stationary and fixed in the world.  We combined all points into a single state vector (similar to 

Broida, et al (Broida, Chandrashekhar et al. 1990)) so that we can represent the cross coupling of 

the uncertainty between different points. 

Note that we represent point positions with respect to the world, even though we do not 

know the actual location of the world origin.  This is not a problem because the world origin is 

arbitrary, and we are only interested in the relative pose between the user and the scene structure.  

In actuality, the world origin is determined by the initial guesses of the user’s pose and the point 

positions.  An alternative method would be to represent the point positions with respect to the 

user, at the cost of a more complex time update step.  As it is, with the points represented in 

world coordinates, the time update step is very easy; i.e., tkkkk ∆+== −
+

−
+ QPPzz 11 ,ˆˆ , where Q 

has very small values. 

Measurement inputs are the observed image feature positions in each of the two cameras 

(again, in this work we do not address the problem of extracting the feature points and 

establishing the required correspondences).  From each camera, we have N feature points, giving 

a 2Nx1 measurement vector y = (u1,v1,…,uN,vN)T.  The sensor measurement equation is y  = h(z), 

where h is a non-linear function and is given by Equation 5.  In this filter, which estimates 

structure, the head pose is considered to be a known input.  In actuality, it is an estimate that 

comes from the motion estimation filter, described above in the previous section.  The 

measurement update equations are given by Equation 9, where H is a 2Nx2N matrix that is the 

linearization of h about the current estimate kẑ ; i.e., [ ]
k

zh zH ˆ∂∂= .  

A block diagram of the structure estimation filter is shown in Figure 3.  Our 

implementation allows for the two cameras inputs to be asynchronous, so each sensor can be 
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incorporated using a separate measurement update.  The filter will perform the time update step 

to project the state from the current time step into the next time step, when data from either 

camera data, yleft or yright, is available.  Then a measurement update step will be followed to 

update the filter's state according to the new measurement input.   

Left Camera 
Measurement Update 

Right Camera 
Measurement Update 

Time Update 
(performed when 
data from either 

camera is available) 

−−
structurestructure Pz ,ˆ

structurestructure Pz ,ˆ

lefty

righty

 

Figure 3  Block diagram of structure estimation filter. 

If data from the two cameras are actually available simultaneously, an alternative method 

is to calculate the 3-D point positions directly using stereo triangulation, and use those as the 

input data instead of the 2-D image points of each camera.  However, sometimes a feature is 

visible in one camera and not the other, due to occlusion or limited field of view.  In that case, 

our method would still allow data to be used from one camera alone. 

3.3 Combined Motion and Structure Estimation 

The previous two subsections describe separate Kalman filter algorithms to predict the 

pose of the user's head and estimate the 3-D structure of the feature points, respectively.  To 

predict the user's head motion, we use inertial sensor data and camera image data and we assume 

that the true location of the feature points with respect to the world is known.  To estimate the 3-
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D structure of the feature points, we only use camera image data and we assume that the true 

camera motion is known.  

This subsection describes a combined system that simultaneously predicts the motion and 

pose of the head as well as the location of the feature points.  The idea is to take the results of the 

head motion prediction filter and use it as a known condition for the estimation of the 3-D 

structure.  Meanwhile, we take the results from the estimation of the 3-D structure filter and use 

it as a known condition for the head motion prediction step.  Thus these two steps form a 

feedback loop.  Figure 4 shows a block diagram of the data flow for the entire process. 

Head Motion Filter Structure 
Estimation Filter headẑ

structureẑ

Inertial Sensor 
Measurements 

Camera Image 
Measurements 

rightleft yy ,ag yy ,

 

Figure 4  Block diagram of the combined filter algorithm. 

The basic structure of the algorithm consists of two EKF’s running in parallel.  Each filter 

contains its own time update step and measurement update step.  This system is designed to 

accommodate the fact that camera image data is usually obtained at a slower rate than inertial 

sensors data.  This means that when either gyroscope data or accelerometer data is available, 

only the head motion prediction filter will perform the time update step and the measurement 

update step according to the new inertial sensors measurement input.  However, when camera 
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image data is available, both the head motion prediction filter and the feature point prediction 

filter will perform its own time update step and measurement update step separately. 

4 Experimental System 

Our experimental system consists of a see-through HMD (Virtual i-o i-glasses) mounted 

on a helmet (Figure 5).  Also attached to the helmet are three small video cameras (Panasonic 

GP-KS162, with 44-degree field of view).  In this work, we used only two of the cameras (left 

and right).  Also attached to the helmet is an inertial sensor system, consisting of a three-axis 

solid state gyroscope (Watson Industries) and three orthogonally mounted single-axis 

accelerometers (IC Sensors).  Data was transmitted to a desktop computer through a cable tether.     

 

Figure 5  Experimental augmented reality system. 

We measured the standard deviation of the noise in the accelerometers to be an average 

of 36 mm/s2, and that of the gyroscopes to be approximately 0.1 rad/s (Nguyen 1998).  We 

measured gyroscope biases to be very small compared to the measurement noise, and so ignored 

them for the remainder of this study. 
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To obtain ground truth data, we used a Northern Digital Optotrak optical position sensor 

model 3020, which was mounted on the wall of the lab (Figure 6), and tracked a set of six 

infrared LED’s mounted on the helmet.  The Optotrak system uses high-resolution linear array 

CCD cameras, and can measure the LED positions to an accuracy of 0.15 mm (Rohling, Munger 

et al. 1995).  Since the optical sensor can achieve such a high accuracy, we used it to provide 

ground truth information of the pose of the user's head, so that we could compare the results of 

our algorithm to a known result.  However, we did not use it as a measurement input for the 

algorithm that we developed in this research. 

 

Figure 6  High-accuracy optical sensor used for ground truth. 

Video images from the head-mounted cameras were digitized to a resolution of 640x480 

pixels.  We manually processed the images off-line to extract the feature point positions.  We 

estimated the error in feature point measurements to be ± 2 pixels.  This is a conservative 

estimate, and automatic feature extraction algorithms can be much more accurate. 
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Our current system does not support real-time data acquisition and processing.  As 

described in the next section, we recorded measured data to a file and processed it off-line.  The 

Kalman filter algorithms were written in Matlab and run on a Pentium-class personal computer. 

5 Results 

5.1 Synthetic Data 

We first examined the behavior of the algorithm on purely synthetic data.  Four motion 

trajectories were described, and synthetic accelerometer, gyro, and camera data were generated 

from them.  The first trajectory was a simple translation at constant velocity in the world +X 

direction, with the user maintaining a fixed gaze parallel to the world +Y axis (Figure 7a).  The 

second trajectory was the same except for a constant acceleration.  In the third trajectory, the user 

moves along a curve with constant velocity in X and constant acceleration in Y, but rotates their 

head with constant angular velocity in order to keep the feature points in view (Figure 7b). 

  

 (a) (b) 

Figure 7  Synthetic user motions for trajectories along the +X axis direction (a) or in the XY plane (b). 
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In the fourth trajectory, an arbitrary motion in the XY plane with varying accelerations 

was used, but with fixed orientation.  A plot of the translation is shown in Figure 8.   

 

Figure 8  Arbitrary motion in XY plane with varying acceleration, used for synthetic trajectory #4. 

Synthetic computer vision data was generated for 5 features, located at points in space 

around the user.  Synthetic white Gaussian noise was added to the measurements with a standard 

deviation of 0.1 rad/s for gyro data, 36 mm/s2 for accelerometer data, and 0.04 mm for camera 

data (corresponding to 2 pixels in the image).  The data rates of the sensors were 50 ms for the 

inertial sensors and 0.5 s for the vision data.  The details of these four experiments are 

summarized in Table 1. 

Table 1  Summary of synthetic motion trajectories. 

Trajectory Translation Gaze direction 
1 Constant velocity of 100 mm/s in the +X 

direction 
Fixed in +Y 

2 Constant acceleration of 2 mm/s2 in the +X 
direction, initial velocity zero 

Fixed in +Y 

3 Constant velocity of 30 mm/s in +X, 
constant acceleration of 1.5 mm/s2 in +Y  

Constant angular rotation from 
+Y to -X 
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4 Arbitrary motion in XY plane with varying 
accelerations 

Fixed in +Y 

 

Filter parameters were the same for all synthetic experiments.  Measurement covariance 

matrices (R in Equation 9) were set according to the observed values of sensor noise, as 

described in Section 4.  The process noise matrices (Q in Equation 8) were set as follows: 

[ ]( )
[ ]( )IIIIIQ

IIIIIQ
02.02.02.02.02.

10101010 63

diag
diag

structure

head

=
= −

 

where diag indicates the matrix is block diagonal with the listed elements along the diagonal and 

I is a 3x3 identity matrix.  The small values in Qstructure reflect the fact that the point positions are 

stationary in the world. 

For the head motion filter, the values of Qhead were chosen empirically in order to achieve 

the best performance of the filter.  Note that the process noise term for linear velocity is much 

larger compared to that for the position and the acceleration.  Although it is usually difficult to 

give a simple explanation for the values obtained via tuning, it is clear that the velocity estimate 

will be modified by measurements very easily.  Since we have no direct measurement of 

velocity, the predicted velocity is derived from past velocity estimates and the acceleration at the 

current time.  Since the inertial sensor suffers from drift over time, the velocity estimate becomes 

less accurate as well.  The large value for velocity process noise covariance will drive the 

velocity state covariance higher, and when the position term is updated according to the new 

image measurement, the filter will tend to ignore the current velocity estimate and "reset" the 

estimate based on the value derived from the position term. 

Results are summarized in Table 2.  We look at the difference between the predicted and 

actual point positions, initially and at the end of each run.  We measure the 3-D error relative to 

the user (specifically, the camera frame).  However, in many AR applications the accuracy of 2-
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D image overlays is more important than actual 3-D scene structure.  Thus, we also look at the 2-

D projected point positions onto the camera image plane2.  As one can see, the error decreases 

significantly from the beginning to the end of each run, in both 3-D and 2-D. 

Table 2  Synthetic motion results, showing initial and final feature point errors. 

Experiment  Avg. 3-D error (mm)  Avg. 2-D error (mm) 
 Initial Final Initial Final 
1 612.23 44.71 0.69 0.07 
2 612.23 26.98 0.73 0.04 
3 430.08 31.05 0.39 0.04 
4 627.07 12.88 0.30 0.03 

 
As is evident in Table 2, initial guesses for 3-D point positions were set fairly large from 

the true values, to test the algorithm’s ability to recover from poor a priori knowledge of the 

scene.  In fact, the initial errors are comparable to the distance from the user to the points (about 

1 to 2 m).  Figure 9 shows the rapid decrease of 3-D point errors for one of the experiments (#3).   

                                                 

2 We assume that errors in the camera image plane are comparable to those on the HMD 

display, since the cameras are typically mounted close to the HMD. 
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Figure 9  Point prediction error in 3-D, as a function of time (experiment #3). 

Figure 10 (a) shows a top view of the prediction process in the {C} frame, also for 

experiment #3.  The solid lines represent the true trajectory of the feature points whereas the 

markers represent the predicted trajectory for the feature points.  The two sets of lines eventually 

converge at the end of the motion.  Figure 10 (b) shows the entire process in the {W} frame 

viewed from the top.  The "o" represents the position of the right camera in the {W} frame, and 

the "+" represents the true location of feature points.  Since the points are fixed in the {W} 

frame, they do not move during the process.  The "." represents the predicted location of feature 

points.  The initial guesses of point locations are fairly far away from the true locations, but 

move toward the true locations along as time goes on.  Note that the estimated world origin also 

settled down in an arbitrary location. 
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(a) 

 

(b) 
Figure 10  Top view of experiment #3, in {C} frame (a) and in {W} frame (b). 
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5.2 Real Image Data, Synthetic Inertial Sensor Data 

We next tested the algorithm on real image data, but synthetic inertial sensor data.  A set 

of feature points was placed on the surface of a table.  We measured the location of the each 

feature point with respect to the Optotrak sensor mounted on the wall (Figure 11).  The helmet 

(mounted on a tripod) was physically translated from one end of the table to the other.  During 

the movement, the helmet was rotated so that the cameras were aimed at the feature points on the 

table.  The movement was quasi-static, in that we moved the tripod, then collected image data 

while it was stationary, then moved it again, etc.  The Optotrak sensor tracked the LED’s 

mounted on the helmet to provide ground truth pose.   

 

Figure 11  Real motion experimental setup, with Optotrak sensor on wall. 

We then generated synthetic inertial sensor data corresponding to the real motions 

recorded by the Optotrak sensor.  The ground truth real motion data is shown in Figure 12 and 

Figure 13. 
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Figure 12  Real motion ground truth translation data. 

 

Figure 13  Real motion ground truth orientation data. 
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Our motion and structure estimation algorithm was then run on this real image data and 

synthetic inertial sensor data3.  The result was that the average 3-D point error decreased from an 

initial value of 1002 mm to a final value of 126 mm at the end of the run, and the average 2-D 

point error decreased from an initial value of 0.79 mm to a final value of 0.09 mm.  Figure 14 

shows the decrease of 3-D point errors as a function of time. 

 

Figure 14  Point prediction error in 3-D, as a function of time (real image data, and synthetic inertial sensor 

data). 

Although the filter converges for real image data, the errors are larger than for synthetic 

image data.  The reason for the larger error is probably due to the crude calibration that was done 

of the cameras.  We only roughly measured the focal length, the camera-to-helmet 

                                                 

3 Although synthetic, the inertial sensor data is based on measured real motion. 
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transformation, and the transformation between the Optotrak LED’s and the cameras.  We also 

made some simplifying assumptions - that there was no lens distortion in the cameras, and that 

the optical axes of the two cameras were aligned with each other.  All of these calibration error 

sources could account for the larger error we saw with real data. 

5.3 Real Image Data, Real Inertial Sensor Data 

We next tested the algorithm on real image data with real inertial sensor data.  A person 

wore the helmet and viewed a calibration object on a table.  The calibration object consisted of a 

pyramid-shaped block covered with a checkerboard pattern (Figure 15).   The person executed a 

series of rotations and translations over a period of approximately 16 seconds, while keeping the 

block centered in the field of view.  During the sequence, we simultaneously recorded digital 

video from the two head-mounted cameras, as well as inertial sensor data at a rate of 75 Hz.    

 

Figure 15  Experimental setup for tests using real image data and real inertial sensor data. 
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Inertial sensor data was captured by an A/D board on a PC, running LabView.  

Simultaneously, an external time signal was also captured and used to “time stamp” the data.  

This external time signal was generated by a counter, and was continuously shown on a digital 

display placed in the field of view of the cameras.  In this way, we were able to synchronize the 

video images with the inertial sensor data during the subsequent off line processing. 

A set of 100 stereo image pairs were extracted from the digital video streams, at a rate of 

6 Hz.  We manually identified the time of each image pair by reading the digital display on the 

counter, visible in each image.  Corner features were extracted from each image, using an 

automatic corner detection algorithm.  The locations of 5 corner features that remained visible 

throughout the move sequence were recorded in each image4 (Figure 16). 

The algorithm was then run on the recorded combined data stream (consisting of image 

point locations and inertial sensor data), to produce an estimate of head motion and also the 3D 

locations of the observed feature points.  Note that in this test, we did not have ground truth data 

for the head motion.  However, since we did know the 3D structure of the calibration object, we 

could compare the derived 3D points with the known 3D points on the block. 

                                                 

4 However, the algorithm can tolerate occasional loss of data.  In this run, one or more of 

the feature points were occasionally obscured in some images. 
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Figure 16  View of calibration object taken from right head-mounted camera, showing the 5 feature points 

that were tracked (marked by dark crosshairs).  Also visible below the checkerboard is the electronic counter 

used to synchronize the video stream to the inertial sensor data stream. 

The algorithm was started with a rough estimate of the locations of the feature points.  A 

3D depiction of the initial point locations is shown in Figure 17.  Note that the points are far 

from co-planar. 

   

Figure 17  Two views of the initial starting configuration, showing the pose of the head (cube with arrow) and 

the initial estimates of the point positions. 
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The final configuration of the camera and the 3D point estimates is depicted in Figure 18.  

Note that the final point position estimates are almost perfectly coplanar, as they should be since 

they actually do lie on a plane. 

   

Figure 18  Two views of the final configuration, showing the pose of the head (cube with arrow) and the final 

estimates of the point positions. 

To evaluate the accuracy of the resulting estimated 3D structure, we fit the estimated 3D 

points to a plane.  The RMS (root mean squared) error of the fit of the points to a plane is shown 

in Figure 19.  Initially, the RMS error is over 63 mm, but it rapidly decreases over the motion 

sequence until it reaches a final value of 10.8 mm.  It is possible that these errors could be 

reduced significantly if better calibration was done of the cameras.   
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Figure 19  RMS error of the estimated 3-D points, as a function of time (real image data and real inertial 

sensor data). 

5.4 Comparison of One Camera vs. Two Cameras 

Our algorithm is designed to be used with any number of cameras, although we used two 

cameras in the majority of our testing.  One issue is whether two cameras are necessary.  In 

principle, a single head-mounted camera with inertial sensor data should be able to recover 

structure and motion with no unknown scale factor.  Effectively, the motion of the single camera 

provides a baseline separation between two viewpoints, from which triangulation can be done to 

recover depth unambiguously.  However, unlike the stereo case, where the baseline separation is 

known very accurately, in the single camera case we only have a rough estimate of the motion.  

As a result, we would expect structure estimation to be less accurate for a single camera system 

than for a two camera system. 

We performed a test to see if this was true, and to see if more accurate inertial sensor data 

could compensate for the loss of one camera.  A single camera system was run on the synthetic 
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data from experiment 4 (Figure 8).  The amount of noise added to the inertial sensor data was 

varied, in 5 different trials.  The results are shown in Table 3.  The top row of the table shows the 

results for the two camera system, previously shown in Table 2, and is repeated here for 

convenience.  The remaining rows of the table show the results for the one camera system, with 

varying levels of noise for the accelerometers and gyros. 

Table 3  Comparison of structure estimation errors for one camera vs. two cameras. 

 σ2 (accell), 
(mm/s2)2 

σ2 (gyros), 
(rad/s)2 

Avg initial 
3D error 

(mm) 

Avg final 
3D error 

(mm) 

Avg initial 
2-D error 

(mm) 

Avg final 
2-D error 

(mm) 

Two cameras 1300 0.01 627.07 12.88 0.30 0.03 

 1300 0.01 627.07 1066.17 0.34 0.34 

 130 0.001 627.07 461.29 0.35 0.16 

One camera 13 0.0001 627.07 198.65 0.34 0.06 

 1.3 0.00001 627.07 65.15 0.34 0.13 

 0.13 0.000001 627.07 51.53 0.36 0.09 

 

The tests confirm that the single camera system does not perform as well as the two 

camera system, in terms of the final 2-D and 3-D prediction errors in the point positions.  When 

the variance of the inertial sensor noise is decreased by three orders of magnitude, the final 

prediction errors appear to level off, although they are still much higher than the errors in the two 

camera system.  We conclude that two cameras may be required for practical tracking in AR.  

This is a possible area of future investigation. 

6 Discussion 

We have developed a new method for AR registration that simultaneously tracks the pose 

and motion of the user’s head, as well as estimating the 3-D locations of naturally occurring 
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features in the scene.  Relying only on head-mounted cameras and inertial sensors, the method is 

applicable to portable systems, and in completely unstructured and unprepared environments.  

Unlike previous work in this area, this method requires no a priori knowledge about the scene, 

and can work in environments where the objects of interest are close to the user.  We 

experimentally found good convergence on testing with a combination of real and synthetic data.  

Although our method can work with any number of cameras, we found that two cameras gave 

much better performance than a single camera. 

Our method assumes that visual features exist in the scene, that they persist over time, 

and are stationary.  Our work primarily addressed the algorithmic issues of how to fuse data from 

(possibly asynchronous) camera and inertial data sensors, in order to estimate structure and 

motion.  We did not address many other difficult problems, such as detecting and tracking 

features, calibration, and real time operation.  Some progress has been made on these issues by 

other researchers, and they remain an active area of research. 

A possible area of future investigation is how to tune the filter parameters (specifically, 

the process noise covariance matrices) to achieve optimum performance.  Ideally, instead of 

manually adjusting the parameters based on an intuitive understanding of the process, an 

automatic procedure would be used such that optimum performance of the system is guaranteed.  

One interesting approach is to adaptively adjust the filter parameters based the observed motion 

of the user.  Intuitively, if the person is moving slowly and smoothly, we effectively have a lower 

level of process noise (i.e., unmodeled disturbances) than if the person is moving rapidly and 

accelerating quickly, etc.  We have done some preliminary work in this area, in developing an 

adaptive estimation approach based on a multiple model estimator (Chai, Nguyen et al. 1999). 
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9 Figure Captions 

Figure 1  Frames of reference. 

Figure 2  Block diagram of head motion filter. 

Figure 3  Block diagram of structure estimation filter. 

Figure 4  Block diagram of the combined filter algorithm. 

Figure 5  Experimental augmented reality system. 

Figure 6  High-accuracy optical sensor used for ground truth. 

Figure 7  Synthetic user motions for trajectories along the +X axis direction (a) or in the 

XY plane (b). 

Figure 8  Arbitrary motion in XY plane with varying acceleration, used for synthetic 

trajectory #4. 

Figure 9  Point prediction error in 3-D, as a function of time (experiment #3). 

Figure 10  Top view of experiment #3, in {C} frame (a) and in {W} frame (b). 

Figure 11  Real motion experimental setup, with Optotrak sensor on wall. 

Figure 12  Real motion ground truth translation data. 

Figure 13  Real motion ground truth orientation data. 

Figure 14  Point prediction error in 3-D, as a function of time (real data). 

 


