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Abstract 
The need to register data is abundant in applications such 
as: world modeling, part inspection and manufacturing, 
object recognition, pose estimation, robotic navigation, 
and reverse engineering. Registration occurs by aligning 
the regions that are common to multiple images. The 
largest difficulty in performing this registration is dealing 
with outliers and local minima while remaining efficient. 
A commonly used technique, iterative closest point, is 
efficient but is unable to deal with outliers or avoid local 
minima. Another commonly used optimization algorithm, 
simulated annealing, is effective at dealing with local 
minima but is very slow. Therefore, the algorithm 
developed in this paper is a hybrid algorithm that 
combines the speed of iterative closest point with the 
robustness of simulated annealing. Additionally, a robust 
error function is incorporated to deal with outliers. This 
algorithm is incorporated into a complete modeling 
system that inputs two sets of range data, registers the 
sets, and outputs a composite model. 

1 Introduction 

Registration is a process through which two sets of 
geometric data are aligned. This paper concentrates on 
registering two partially overlapping scans of range data, 
which are simply sets of three-dimensional points 
sampled by a sensor from the surfaces of objects , as 
shown in Figure 1. 

   
Figure 1  Two partially overlapping range data scans (Set 
#3) taken with a structured lighting system at Sandia 
National Laboratories with ~5000 points per scan of a 4x4 ft. 
corner. 

As can be seen in the figure, range data often contains 
noise and points with large errors (outliers). Also, one 
cannot rely on a point to be sampled at the exact same 
position on a surface, in each scan (due to inconsistent 
point sampling). These characteristics make registration a 
very difficult problem. 

The need for registration is important in applications such 
as world modeling, part inspection and manufacturing, 

object recognition, pose estimation, robotic navigation, 
and reverse engineering. In this paper, we will focus on 
world modeling. To create a world model from the data in 
Figure 1, first a surface model of each scan must be made 
from the point data, as shown in the top images in Figure 
2. Then registration must be performed, meaning that the 
relative translation and rotation between the two models is 
determined, to bring them into alignment. Finally, the 
scans must be stitched together to form a final model, as 
shown in the bottom image of Figure 2. Creating a surface 
model is easily performed and stitching the two models 
together is also relatively easy. Therefore, this paper will 
emphasize the registration process. 

   

 
Figure 2  Top: surface models from point data in Figure 1.  
Bottom: final fused model. 

If one has precisely calibrated the extrinsic parameters of 
the data acquisition devices (i.e., their position and 
orientation in the world), then one can readily register the 
scans (referred to as dead-reckoning). However, this 
accuracy is usually not good enough for model building 
applications, although it can be used to create an initial 
guess. Therefore, it is necessary to use information from 
the data itself to refine the registration parameters. 

The easiest method for registering two sets of three-
dimensional points is the absolute orientation algorithm 
[4]. However, this requires knowledge of the 
correspondences between the points, which is extremely 
difficult to find. An algorithm which deals with this 
correspondence problem but does not require any pre-
processing or feature extraction, is a technique called 
iterative closest point. 

The iterative closest point algorithm [1], ICP, deals with 
the correspondence problem while efficiently registering 
two range data sets. The process is designed to register a 
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data point set to a model point set. The algorithm uses a 
closest point estimation to compute correspondences. 
That is, for every data point, the model point that is 
geometrically closest to the data point is taken as the 
corresponding point. The process then repetitively uses 
the absolute orientation algorithm [4] to register the point 
sets. The steps of the algorithm are as follows: 
1. Compute the set of closest model points. 
2. Compute the registration between the point sets. 
3. Apply the transformation to register the sets. 
4. Repeat steps 1–3 until Derror < tol. 
This process slowly pulls the data points in to the model 
points. However, ICP will only converge to the closest 
local minimum of the error function surface, as depicted 
in Figure 3.  
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Figure 3 Conceptual diagram of the convergence of ICP and 
SA on a one dimensional error surface  

Our application has many local minima, as shown in 
Figure 4. Using the real data shown in Figure 1 the error 
function was plotted over 2 dimensions (1 translation and 
1 rotation). The result clearly shows a number of local 
minima contained in a larger steadily decreasing pit. 

 
Figure 4 Error function vs. translation and rotation 

Accordingly, our algorithm must be able to deal with 
local minima. The authors of ICP suggest a simple 
strategy, in which the algorithm is started from several 
random locations and the best solution is used. However 
if there are a very large number of local minima, the 
chance of starting the algorithm close enough to the 
global minimum is extremely small.  

An alternative is to use a stochastic optimization 
algorithm, such as simulated annealing (SA). Blais and 
Levine [2] used a modified algorithm called very fast 
simulated reannealing to perform registration. The 
technique is able to traverse local minima, but is 
extremely slow in converging to the global minimum, as 
depicted in Figure 3. 

Accordingly when dealing with an error surface such as in 
Figure 4 and Figure 3, ICP is efficient but will get stuck 
in local minima and SA is robust but inefficient. 
Therefore, a hybrid technique is developed so that local 
minima can be crossed and the global minimum is found 
as efficiently as possible. The two methods are combined 
so that SA works in a similar manner to the suggested 
random restarts for ICP. However, instead of purely 
random restarts, SA should provide restarts closer to the 
global minimum. In this way, SA provides guided restarts 
that get ICP out of local minima and closer to the actual 
solution. The final system produces a high level of 
accuracy and remains as efficient as possible.  

The system presented in this paper is a complete 
registration and modeling system. There are several novel 
portions of this project. 
1. First, a hybrid registration algorithm is developed 

that employs both an efficient local minimizer and a 
robust global search algorithm. The resulting 
algorithm handles local minima while remaining 
efficient. 

2. Secondly, a robust weighting function is developed 
that can deal with up to 50% outliers.   

3. Lastly although segmentation is not the focus of this 
paper, a segmentation algorithm is developed that 
accurately segments the overlap data using only a 
position estimate of the scanners and the data itself.  

The entire process for our system is as follows. First data 
acquisition is performed to acquire both the model and 
data sets, and a surface model of each scan is created. For 
this project a Delaunay triangulation was used to create 
the model: its implementation is straightforward and 
accordingly skipped but is covered in [7]. The description 
in this text starts with the segmentation of the overlapping 
region, which is accomplished using a novel frustum 
segmentation technique. Next, registration is performed 
on the segmented regions using a robust error function 
and incorporating it within the hybrid algorithm. Finally, 
the two scans are stitched together to yield the final 
model. 

2 Detailed Description 
2.1 Finding the Overlapping Region 

The segmentation process assumes that an initial guess for 
the registration has already been employed, such as 
through dead reckoning. Since the scans are already 
roughly aligned, the majority of points in the overlapping 
region of the data scan lie within the boundary of the 
model scan. Therefore, one should be able to use the view 
of the model scanner to pick out the points in the data set 
that are in the region occupied by the model.  

To model the view from the model scanner a frustum is 
created using the position of the scanner and the outline of 
its point set. Creating a frustum is accomplished using the 
surface model and the scanner position. The frustum is 
simply a set of triangles extending from the scanner 
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position around the outline of the point set. Since the 
Delaunay triangulation creates a convex hull around the 
point set, the frustum is also convex. Therefore, any point 
within the frustum will be on the inside of each frustum 
plane. 

The result of this segmentation process is a data set that 
contains only points that could be sampled from the 
position estimate of the model scanner. After 
segmentation the overlapping data region should contain 
less than 50% disparity with the model, which allows for 
accurate registration through the use of the robust error 
function. 

2.2 Robust Error Function 

The goal of the error function is to provide an error score 
that is minimized when the best rotation parameters and 
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However range data contains both outliers and 
inconsistent point sampling, and the error function must 
be able to deal with these problems. 

Chen and Medioni [3] use a surface model to minimize 
the errors produced by inconsistent point sampling. A 
surface model allows points to be matched up anywhere 
on the surface model, and therefore it is no longer 
necessary for each data point to be matched with a model 
point sampled from its exact location. This adaptation 
profoundly increases the final accuracy achieved, and is 
incorporated into our error function. 

Building invariance to outliers inevitably means 
employing weights. When the scans are aligned outlier 
points will lie farther from the model surface than good 
data points. The difficulty lies in assessing what distance 
is close and what is far. The problem is compounded 
since our method iteratively pulls in the data points. With 
this in mind points are dynamically weighted so that the 
error is calculated according to:  
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Where 2
id  is the squared distance from a data point to the 

model surface and iw  is the weight for point i. 

Many techniques simply use a threshold weighting 
scheme, which eliminates points with errors above the 
threshold. However, it is difficult to set the threshold 
when the registration is iteratively improved. Zhang [11] 
uses a dynamically changing threshold to overcome this 
problem, but his technique is not perfect. A more 
straightforward approach is employed by Masuda and 
Yokoya [8]. Their algorithm avoids the effects of outliers 
by using the median of the distance between point pairs. 

In this way up to 50% of the points can be outliers 
without affecting the threshold. This is a form of robust 
estimation [5], which has many useful variations.  

Accordingly our weighting is based around the median 
squared distance from each data point to the surface 
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Accordingly good points are not scaled, but outliers are 
scaled so that the individual error contributed is equal to 2 
times the median squared distance, as shown in Figure 5.  
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Figure 5 Contribution of a single point (wi di
2) to the error  

The error function assures that errors accumulated by 
outliers are minimized but still have some effect (slightly 
more than a good point which contains the normal error of 
the sampling device). This small amount of error is 
incorporated because when the error is allowed to go to 
zero entire surfaces may be tagged as outliers. For 
instance if the error is allowed to go to zero, the lowest 
error score for the corner of a room is achieved when two 
planes are aligned and the third is hovering above the 
threshold. This occurs because in this position the 
hovering points will have an error of zero, but if aligned 
correctly the points would contribute a small amount of 
error due to noise in the data. The resulting error function 
can achieve excellent registration even in the presence of 
outliers of up to 50% of the data. To aid in registration 
this error function must be embedded into SA and ICP so 
that they operate on the same error surface. Once on the 
same error surface a hybrid algorithm is created to use the 
two techniques in conjunction. 

2.3 Simulated Annealing 

Simulated annealing is a capable of crossing local minima 
and locating the global minimum [6]. The form of SA 
used is a variation of the Nelder-Mead downhill simplex 
method, which incorporates a random variable to 
overcome local minima [9]. A simplex is simply a set of 
N+1 guesses, or vertices, of the N-dimensional state-
vector sought and the error associated with each guess. 
For example we are solving for six registration parameters 
(translation and rotation); therefore the simplex has 7 
vertices and the error associated with each of the vertices. 
The simplex attempts to walk downhill by replacing the 
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vertex associated with the highest error by a better point. 
Through repetitively replacing bad vertices with better 
points the simplex moves downhill. 

SA introduces a random element, based upon a 
"temperature" variable, to the downhill simplex method to 
allow the algorithm to escape local minima. A random 
amount, scaled by the temperature, is subtracted from 
each tested replacement point. Therefore while any move 
that is a true downhill step will be accepted, some 
additional uphill steps will also be accepted. At high 
temperatures most moves are accepted and the simplex 
roams freely over the search space. At lower temperature 
only smaller uphill steps can be accepted. As the 
temperature is slowly lowered the simplex crawls out of 
local minima and converges upon the global minimum.  

SA is set up to perform registration by incorporating our 
error function, and employing a temperature schedule 
based upon experience with the algorithm. The set-up 
procedure is covered in detail in [7].  

2.4 Adapting Iterative Closest Point 

In order to use both methods we had to adjust the ICP 
algorithm so that it operates on the same error surface as 
SA. To do this the algorithm must use the same point 
correspondences and the same error function.  

Our method for computing point correspondences uses 
the distance from each data point to the surface model. 
However, the original ICP algorithm works by matching 
data points with the closest model point. ICP can be 
altered to use our correspondences by substituting the 
closest point on the model surface for the closest model 
point. 

The robust error function incorporated into SA weights 
each distance so that outlier points have a lesser effect. 
ICP repetitively calls the absolute orientation algorithm to 
calculate the transformation parameters. Accordingly the 
absolute orientation algorithm had to be modified to 
include weighting of the point pairs. The weights are 
determined by the robust error function, and incorporated 
into the absolute orientation algorithm as described by 
Horn [4]. The process now operates on the same error 
surface as SA, and a hybrid algorithm can be developed. 

2.5 Hybrid Algorithm 

The idea behind the hybrid algorithm is to use ICP to 
speed up SA. The process for combining the two is 
relatively simple; the basic idea is for SA to choose good 
starting points for ICP. In other words ICP does the 
majority of the work, but when trapped in a local minima 
SA will attempt to traverse the minima and choose a new 
starting point for ICP.  A flow chart for the process is 
shown in Figure 6. 

The process starts by running ICP from the original 
position, which will converge to the nearest local minima. 
If dead reckoning has aligned the scans close enough to 

the global minimum, ICP will converge upon it. The error 
should be below the error threshold and the algorithm will 
stop without ever using SA. If not ICP will stop above the 
threshold, and SA is then employed to search about the 
error surface for a point with a lower error score. To 
ensure SA is searching in the right area, one of the 
simplex vertices is moved to the point at which ICP 
stopped. SA will continue until a better point is found 
where it relinquishes control to ICP, or until the 
temperature falls below the minimum. The entire process 
repeats until the error is driven below a set threshold [4].  
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Figure 6 Flow chart of hybrid algorithm. 

Figure 7 depicts how this process moves across the error 
surface. The error surface was created by rotating and 
translating the real world data shown in Figure 1 across 
the x-axis. The figure reproduces the route of the hybrid 
algorithm across the error surface and to the global 
minimum.  
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Figure 7 Hybrid algorithm on a 2-D error surface.    

The figure shows the effectiveness of the hybrid 
algorithm. As can be seen ICP initially converges on a 
local minimum. Then SA moves to a better point, and the 
algorithm is able to swiftly converge to the global 
minimum. Figure 8 shows how the error score changes for 
the run in Figure 7. 
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Figure 8 Error score for the hybrid algorithm. 
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2.6 Model Creation 

Once the scans have been registered, the final model is 
created by stitching the two surface models together. The 
first step is to remove portions of the data that overlap 
with the existing model, by repeating the frustum 
technique. The remaining data is then stitched into the 
existing model at the intersections. This process is 
covered in detail in [7]. 

3 Results 

First, the hybrid algorithm was compared to ICP by itself 
and SA by itself. Each method was employed ten separate 
times from three initial positions using data set #3 and 4. 
The results are shown in Table 1. One iteration for data 
set 3 (registering ~250 data points ~5000 model points) 
required ~1 second, and one iteration for data set 4 
(registering ~600 data points to ~10000 model points) 
required ~6 seconds on an SGI R4400 Indigo 2. 
Table 1 Comparison of hybrid, ICP, and SA algorithms 
averaged from 3 starting poses spread across 5 degrees of 
rotation and 250 mm of translation. 

 Average 
Error (mm)2 

Average 
# Iterations 

Data Set # 3 
Hybrid 1.31 1479 
S.A. 1.35 6508 
I.C.P. 2.21 31 
Data Set # 4 
Hybrid 6.61 2301 
S.A. 8.34 6419 
I.C.P. 14.8 37 

The results indicate that the hybrid algorithm achieves the 
same level of accuracy as SA, while both algorithms far 
exceed the level achieved by iterative closest point. 
However, the results also show that the hybrid algorithm 
takes on the average only 23% of the iterations consumed 
by SA. Accordingly the hybrid algorithm is able to 
achieve the same level of accuracy as SA, and does so in 
about 1/4th the time. 

In addition the hybrid algorithm was run on 3 real data 
sets: two structured lighting sets (Figure 1 & Figure 10) 
taken at Sandia National Laboratories and one set taken 
with a Coleman laser range detector (Figure 9), and also 
on 2 synthetic data sets. 

  
Figure 9 Data set #4 of a 6x4 ft scene with ~60,000 points. 

  
Figure 10 Data set #5 of a 3x3 ft portion of a plane wing with 
~3000 points per scan. 

For each data set the algorithm was run from five separate 
initial positions spread across 5 degrees of rotation and 50 
mm of translation, one of which can be seen in Figure 11.  

 

Figure 11 View of initial pose for Data Set #3. 

The results are summarized here but can be viewed in 
more detail in [7]. When run on the synthetic data set 
where perfect registration was possible the hybrid 
algorithm always found the exact registration. It was also 
noticed that the algorithm fell into an average of 2 local 
minima before the global minimum was found.  

The results for data set 3 (Figure 1) and data set 4 (Figure 
10) are shown below in Table 2 & Table 3. 
Table 2 Results for data set #3. The ground truth error is 
1.20mm2 for this data set. 

Pos. 
 

Final Error 
(mm)2 

Local 
Minima 

Iterations 
ICP + SA 

1.  1.38 5 28 + 1816 
2.  1.28 5 40 + 1714 
3.  1.29 8 28 + 1614 

4.  1.37 4 27 + 1417 
5. 1.21 5 35 + 1210 

Table 3 Results for data set #4. The ground truth error is 
6.02mm2 for this data set. 

Pos. 
 

Final Error 
(mm)2 

Local 
Minima 

Iterations 
ICP + SA 

1.  6.25 3 28 + 1816 
2.  6.03 2 40 + 1714 
3.  6.46 4 28 + 1614 
4.  16.07 6 27 + 1417 
5. 6.08 6 35 + 1210 
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These results show that although the final poses are 
extremely close, the algorithm failed to converge to the 
same exact location when run from different initial 
positions. This reveals that our error surface has many 
shallow local minima surrounding the global minimum. 
This is discussed in more detail in the conclusions. 

When the algorithm was run on data set #5 (Figure 10), 
poor results were achieved. Since the overlap is 
ambiguous in at least one direction and many local 
minima occur along this direction, the algorithm had 
trouble travelling along this direction to find the global 
minimum. Accordingly the algorithm can be expected to 
perform poorly when an ambiguous overlap is used. 

4 Discussion and Conclusions 

The system presented in this paper is a complete surface 
registration and modeling process. It inputs two 
overlapping range data sets, and outputs a registered and 
fused surface model comprised of both scans. The largest 
contribution of the method is the registration process. 
Incorporating a robust error function into ICP and SA has 
been done before. However by incorporating the same 
robust error function into both routines the system not 
only gained the robustness of the error function, but it was 
also able to use both minimization methods in unison. By 
linking the methods to cooperate with one another, the 
system now had the robustness to deal with local minima 
while retaining efficiency. This novel approach proves to 
be much more efficient than a global technique by itself, 
and much more accurate than a local technique. In 
addition, a secondary contribution comes from the 
effectiveness of the novel segmentation approach. 

The method does have limitations. First, the estimate of 
the range sensor position must be accurate enough to 
ensure that there is less than 50% disparity in the 
segmented overlap. However, it was logically shown in 
subsection 2.1 that even with highly inaccurate dead 
reckoning system the frustum technique performs well. 
Additionally the algorithm will have problems if the error 
surface is relatively flat with many local minima. This 
type of error surface is extremely difficult to solve, and 
there is no guarantee that our method will do so. 

There is also an existing algorithm that would improve 
our process. The current method for finding the closest 
point on the model surface for each data point is very 
inefficient. In Simon’s paper [10] speed improvements 
down to approximately 7% of the original search time are 
achieved through the use of k-d trees and closest point 
caching. The introduction of these improvements would 
greatly enhance the efficiency of the registration phase.  

Lastly, there is an anomaly in the results that warrants 
further discussion. First the algorithm did not consistently 
converge to the same minimum. Accordingly, small local 
minimum pits must surround the global minimum. An 
acceptable solution may be to employ ICP with zero 
weighting from the convergence point of original hybrid 

algorithm. If the shape of the error function itself is 
causing these shallow local minima, employing zero 
weighting may remove them. In addition since the scans 
are already very close to the proper alignment outliers 
will be easy to detect and zero weighting should improve 
the final accuracy of the method. 

In conclusion, this method proves to be extremely robust 
while remaining efficient. The frustum segmentation 
technique is accurate even when the estimate of the 
scanner position is not precise. By incorporating a robust 
error function based around the median, registration is 
accurate even when presented with up to 50% outliers. 
Lastly the combination of SA and ICP proved to be very 
effective at negotiating the type of error surface 
encountered in the registration of range images. 
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