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Analysis of Head Pose Accuracy
iIn Augmented Reality

William Hoff, Member, IEEE, and Tyrone Vincent, Member, IEEE

Abstract—A method is developed to analyze the accuracy of the relative head-to-object position and orientation (pose) in augmented
reality systems with head-mounted displays. From probabilistic estimates of the errors in optical tracking sensors, the uncertainty in
head-to-object pose can be computed in the form of a covariance matrix. The positional uncertainty can be visualized as a 3D ellipsoid.
One useful benefit of having an explicit representation of uncertainty is that we can fuse sensor data from a combination of fixed and
head-mounted sensors in order to improve the overall registration accuracy. The method was applied to the analysis of an

experimental augmented reality system, incorporating an optical see-through head-mounted display, a head-mounted CCD camera,
and a fixed optical tracking sensor. The uncertainty of the pose of a movable object with respect to the head-mounted display was
analyzed. By using both fixed and head mounted sensors, we produced a pose estimate that is significantly more accurate than that

produced by either sensor acting alone.

Index Terms—Augmented reality, pose estimation, registration, uncertainty analysis, error propagation, calibration.

1 INTRODUCTION

UGMENTED reality is a term used to describe systems in

which computer-generated information is superim-
posed on top of the real world [1]. One form of enhance-
ment is to use computer-generated graphics to add virtual
objects (such as labels or wire-frame models) to the existing
real world scene. Typically, the user views the graphics
with a head-mounted display (HMD), although some
systems have been developed that use a fixed monitor
(e.g., [2], [3], [4], [5]). The combining of computer-generated
graphics with real-world images may be accomplished with
either optical [6], [7], [8] or video technologies [9], [10].

A basic requirement for an AR system is to accurately
align virtual and real-world objects so that they appear to
coexist in the same space and merge together seamlessly.
This requires that the system accurately sense the position
and orientation (pose) of the real world object with respect
to the user’s head. If the estimated pose of the object is
inaccurate, the real and virtual objects may not be registered
correctly. For example, a virtual wire-frame model could
appear to float some distance away from the real object.
This is clearly unacceptable in applications where the user
is trying to understand the relationship between real and
virtual objects. Registration inaccuracy is one of the most
important problems limiting augmented reality applica-
tions today [11].

This paper shows how one can estimate the registration
accuracy in an augmented reality system, based on the
characteristics of the sensors used in the system. Only
quasi-static registration is considered in this paper; that is,
objects are stationary when viewed, but can freely be
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moved. We develop an analytical model and show how the
model can be used to properly combine data from multiple
sensors to improve registration accuracy and gain insight
into the effects of object and sensor geometry and
configuration. A preliminary version of this paper was
presented at the First International Workshop on Augmen-
ted Reality [12].

1.1 Registration Techniques in Augmented Reality
To determine the pose of an object with respect to the user’s
head, tracking sensors are necessary. Sensor technologies
that have been used in the past include mechanical,
magnetic, acoustic, and optical [13]. We concentrate on
optical sensors (such as cameras and photo-effect sensors)
since they have the best overall combination of speed,
accuracy, and range [7], [14], [15].

There has been much work in the past in the photo-
grammetry and computer vision fields on methods for
object recognition and pose estimation from images. Some
difficult problems (which are not addressed here) include
how to extract features from the images and determine the
correspondence between extracted image features and
features on the object. In many practical applications, these
problems can be alleviated by preplacing distinctive optical
targets, such as light emitting diodes (LEDs) or passive
fiducial markings, in known positions on the object. The 3D
locations of the target points on the object must be carefully
measured, in some coordinate frame attached to the object.
In this paper, we will assume that point features have been
extracted and the correspondences known so that the only
remaining problem is to determine the pose of the object
with respect to the HMD.

One issue is whether the measured points are two-
dimensional (2D) or three-dimensional (3D). Simple passive
optical sensors, such as video cameras and photo-effect
sensors, can only sense the direction to a target point and
not its range. The measured data points are 2D, i.e., they
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represent the locations of the target points projected onto
the image plane. On the other hand, active sensors, such as
laser range finders, can directly measure direction and
range, yielding fully 3D target points. Another way to
obtain 3D data is to use triangulation; for example, by using
two or more passive sensors (stereo vision). The accuracy of
locating the point is improved by increasing the separation
(baseline) between the sensors.

Once the locations of the target points have been
determined (either 2D or 3D), the next step is to determine
the full six degree-of-freedom (DOF) pose of the object with
respect to the sensor. Again, we assume that we know the
correspondence of the measured points to the known 3D
points on the object model. If one has 3D point data, this
procedure is known as the “absolute orientation” problem
in the photogrammetry literature. If one has 2D target
points, this procedure is known as the “exterior orientation”
problem [16].

Another issue is where to locate the sensor and target.
One possibility is to mount the sensor at a fixed known
location in the environment and put targets on both the
HMD and on the object of interest (a configuration called
“outside-in” [14]). We measure the pose of the HMD with
respect to the sensor, and the pose of the object with respect
to the sensor, and derive the relative pose of the object with
respect to the HMD. Another possibility is to mount the
sensor on the HMD and the target on the object of interest (a
configuration called “inside-out”). We measure the pose of
the object with respect to the sensor and use the known
sensor-to-HMD pose to derive the relative pose of the object
with respect to the HMD. Both approaches have been tried
in the past and each has advantages and disadvantages.

With a fixed sensor (outside-in approach), there is no
limitation on size and weight of the sensor. Multiple
cameras can be used, with a large baseline, to achieve
highly accurate 3D measurements via triangulation. For
example, commercial optical measurement systems, such as
Northern Digital’s Optotrak, have baselines of approxi-
mately 1 meter and are able to measure the 3D positions of
LED markers to an accuracy of approximately 0.15 mm. The
orientation and position of a target pattern is then derived
from the individual point positions. A disadvantage with
this approach is that head orientation must be inferred
indirectly from the point positions.

The inside-out approach has good registration accuracy
because a slight rotation of a head-mounted camera causes
a large shift of a fixed target in the image. However, a
disadvantage of this approach is that large translation
errors occur along the line of sight of the camera. To avoid
this, additional cameras could be added with lines of sight
orthogonal to each other.

1.2 Need for Accuracy Analysis and Fusion

In order to design an augmented reality system that meets
the registration requirements for a given application, we
would like to be able to estimate the registration accuracy
for a given sensor configuration. For example, we would
like to estimate the probability distribution of the 3D error
distance between a generated virtual point and a corre-
sponding real object point. Another measure of interest is
the overlay error; that is, the 2D distance between the
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projected virtual point and the projected real point on the
HMD image plane, which is similar to the image alignment
error metrics that appear in other work [7], [9], [17].

Another reason to have an analytical representation of
uncertainty is for fusing data from multiple sensors. For
example, data from head-mounted and fixed sensors might
be combined to derive a more accurate estimate of object-to-
HMD pose. The uncertainties of these two sensors might be
complementary so that, by combining them, we can derive a
pose that is much more accurate than that from each sensor
used alone. In order to do this, a mathematical analysis is
required of uncertainties associated with the measurements
and derived poses. Effectively, we can create a hybrid
system that combines the “inside-out” and “outside-in”
approaches.

1.3 Relationship to Past Work and Specific
Contributions

Augmented reality is a relatively new field, but the problem
of registration has received ample attention, with a number
of authors taking an optical approach. Some researchers
have used photocells or photo-effect sensors which track
light-emitting diodes (LEDs) placed on the head, object of
interest, or both [7], [14], [15]. Other researchers have used
cameras and computer vision techniques to detect LEDs or
passive fiducial markings [5], [8], [18], [19], [20], [21]. The
resulting detected features, however they are obtained, are
used to determine the relative pose of the object to the
HMD. A number of researchers have evaluated their
registration accuracy experimentally [17], [7], with Monte-
Carlo simulations [19], or both [18]. However, no one has
studied the effect of sensor-to-target configuration on
registration accuracy. In this paper, we develop an
analytical model to show how sensor errors propagate
through to registration errors, given a statistical distribution
of the sensor errors and the sensor-to-target configuration.

Some researchers avoid the problem of determining pose
altogether and instead concentrate on aligning the 2D image
points using affine projections [22], [23]. Although this
approach works well for video-based augmented reality
systems, in optical see-through HMD systems, it would not
work as well because the image as seen by the head-
mounted camera may be different than the image seen by
the user directly through the optical combiner.

A number of researchers have developed error models
for HMD-based augmented reality systems. Some research-
ers have looked at the optical characteristics of HMDs in
order to calculate viewing transformations and calibration
techniques [24], [25]. Holloway [17] analyzed the causes of
registration error in a see-through HMD system, due to the
effects of misalignment, delay, and tracker error. However,
he did not analyze the causes of tracker error, merely its
effect on the overall registration accuracy. This work, on the
other hand, focuses specifically on the tracker error and
does not look at the errors in other parts of the system, or
attempt to derive an overall end-to-end error model.

In the computer vision field, the problem of determining
the position and orientation from a set of given point or line
correspondences has been well-studied. Some researchers
have developed analytical expressions for the uncertainty of
a 3D feature position as derived from image data [26]. Other
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researchers have evaluated the accuracy of pose estimation
algorithms using Monte Carlo simulations [27], [28], [29],
[30]. Few researchers have addressed the issue of error
propagation in pose estimation. We follow the method
suggested by Haralick and Shapiro [16], who outline how to
derive the uncertainty of an estimated quantity (such as a
pose) from the given uncertainties in the measured data.

Kalman filtering [31] is a standard technique for optimal
estimation. It has been used to estimate head pose in
augmented and virtual reality applications [7], [32], [33].
From a sequence of sensor measurements, these techniques
also estimate the uncertainty of the head pose. This is
similar to the work described in this paper in the sense that
a Kalman filter can be interpreted as a method for obtaining
a maximum likelihood estimate of the state in a dynamic
system, given input-output data [34]. Our system is static
and, so, we do not have a model of the state dynamics. We
fuse data from two measurements, rather than data from a
measurement and a prediction from past data.

In this work, a method is developed to explicitly
compute uncertainties of pose estimates, propagate these
uncertainties from one coordinate system to another, and
fuse pose estimates from multiple sensors. The contribution
of this work is the application of this method to the
registration problem in augmented reality. Specifically:

e The method shows how to estimate the uncertainty
of object-to-HMD pose from the geometric config-
uration of the optical sensors and the pose estima-
tion algorithms used. To help illustrate the method,
we describe its application to a specific augmented
reality system.

e We show how data from multiple different sensors
can be fused, taking into account the uncertainties
associated with each, to yield an improved object-to-
HMD pose. In particular, it is shown that a hybrid
sensing system combining both head-mounted and
fixed sensors can improve registration accuracy over
that from either sensor used alone.

e We demonstrate mathematically some insights re-
garding the characteristics of registration sensors. In
particular, we show that the directions of greatest
uncertainty for a head-mounted and fixed sensor are
nearly orthogonal and that these can be fused in a
simple way to improve the overall accuracy.

The remainder of this paper is organized as follows:
Section 2 provides a background on pose estimation, with a
description of the terminology used in the paper. Section 3
develops the method for estimating the uncertainty of a
pose, transforming it from one coordinate frame to another,
and fusing two pose estimates. Section 4 describes the
particular experimental augmented reality system that was
used to test the registration method—that of a surgical aid.
Section 5 illustrates the application of the method to the
surgical aid system. A typical configuration is analyzed and
the predicted accuracy of the combined (hybrid) pose
estimate is found to be much improved over that obtained
by either sensor alone. Finally, Section 6 provides a
discussion.

2 BACKGROUND ON POSE ESTIMATION
2.1 Representation of Pose

The pose of a rigid body {A} with respect to another
coordinate system {B} can be represented by a six element
vector Bx = (B aorgs Py aorgs P2 a0rg, s B, v)", where PP gorg =
(Ba:Amvg,BonTg,BzAmvg)T is the origin of frame {A} in
frame {B}, and (o, §, 7) are the angles of rotation of {A}
about the (z, y, x) axes of {B}. An alternative representation
of orientation is to use three elements of a quaternion; the
conversion between Euler angles and quaternions is
straightforward [35].

Equivalently, pose can be represented by a 4 x 4
homogeneous transformation matrix [35]:

BR = org
fr— (4 TP ) o

where R is the 3 x 3 rotation matrix corresponding to the
angles (o, 3, 7). In this paper, we shall use the letter x to
designate a six-element pose vector and the letter H to
designate the equivalent 4 x 4 homogeneous transforma-
tion matrix.

Homogeneous transformations are a convenient and
elegant representation. Given a homogeneous point
Ap = (Azp,Ayp,22p,1)7, represented in coordinate system
{A}, it may be transformed to coordinate system {B} with a
simple matrix multiplication Zp = §HAp. The homoge-
neous matrix representing the pose of frame {B} with
respect to frame {A} is just the inverse of the pose of {A}
with respect to {B}, i.e., #H = ZH'. Finally, if we know the
pose of {A} with respect to {B} and the pose of {B} with
respect to {C}, then the pose of {A} with respect to {C} is
easily given by the matrix multiplication {H = HYH.

2.2 Pose Estimation Algorithms

The 2D-to-3D pose estimation problem is to determine the
pose of a rigid body, given an image from a single camera
(this is also called the “exterior orientation” problem in
photogrammetry). Specifically, we are given a set of 3D
known points on the object (in the coordinate frame of the
object) and the corresponding set of 2D measured image
points from the camera, which are the perspective projec-
tions of the 3D points. The internal parameters of the
camera (focal length, principal point, etc.) are known. The
goal is to find the pose of the object with respect to the
camera, ¢i"x. There are many solutions to the problem; in
this work, we used the algorithm described by Haralick and
Shapiro [16], which uses an iterative nonlinear least squares
method. The algorithm effectively minimizes the squared
error between the measured 2D point locations and the
predicted 2D point locations.

The 3D-to-3D pose estimation problem is to determine
the pose of a rigid body, given a set of 3D point
measurements’ (this is also called the “absolute orientation”
problem in photogrammetry). Specifically, we are given a
set of 3D known points on the object {oljp;} and the

1. These 3D point measurements may have been obtained from a
previous triangulation process using a stereo vision sensor.



corresponding set of 3D measured points from the sensor
{senp;}. The goal is to find the pose of the object with respect
to the sensor, Zﬁyx. There are many solutions to the problem;
in this work we used the solution by Horn [36], which uses
a quaternion-based method.” The algorithm effectively
minimizes the squared error between the measured 3D
point locations and the predicted 3D point locations.

3 DETERMINATION AND MANIPULATION OF POSE
UNCERTAINTY

Given that we have estimated the pose of an object using
one of the methods above, what is the uncertainty of the
pose estimate? We can represent the uncertainty of a six-
element pose vector x, by a 6 x 6 covariance matrix Cx =
E(AxAxT), which is the expectation of the square of the
difference between the estimate and the true vector.

This section describes methods to estimate the covar-
iance matrix of a pose, given the estimated uncertainties in
the measurements, transform the covariance matrix from
one coordinate frame to another, and combine two pose
estimates.

3.1 Computation of Covariance

Assume that we have n measured data points from the
sensor {p;} and the corresponding points on the object
{qi}. The object points q; are 3D; the data points p; are
either 3D (in the case of 3D-to-3D pose estimation) or 2D
(in the case of 2D-to-3D pose estimation). We assume that
the noise in each measured data point is independent and
that the noise distribution of each point is given by a
covariance matrix Cp,.

Let p; = g(q;, x) be the function which transforms object
points into measured data points for a hypothesized pose x.
In the case of 3D-to-3D pose estimation, this is just a
multiplication of q; by the corresponding homogeneous
transformation matrix. In the case of 2D-to-3D pose
estimation, the function is composed of a transformation
followed by a perspective projection. The pose estimation
algorithms described above solve for x,5; by minimizing the
sum of the squared errors. Assume that have we solved for
Xest using the appropriate algorithm (i.e., 2D-to-3D or 3D-to-
3D). We then linearize the equation about the estimated
solution X,g:

917
P; + Ap; = g(q;, Xesr + AX) = g(q;, Xest) + [ g} Ax.

ax
(2)

Qi Xest

Since p; ~ g(q;, X.s), the equation reduces to
ogl”

Ap, = | =

P [ax]

where M; is the Jacobian of g, evaluated at (q;, Xgs).
Combining all the measurement equations:

Ax = M;Ax, (3)

q; Xest

2. This is the algorithm used in the Northern Digital Optotack sensor,
described in Section 4.
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M,
= - | Ax = AP = MAx. 4)
M’L

Ap,

Ap,

Solving forl Ax in a least squares sense, we get
Ax = (M"M)~ M”AP. The covariance matrix of x is given
by the expectation of the outer product:

Cy = E(Ax AXT)
—E (MTM)”MTAPAPT((MTM)*IMT)T}

= (M"M) 'M”E(APAPY) ((MTM)‘lMT)T
cC, - 0

= (M"M) 'M? ((m™m) *IMT)T.

0 - G

()
Note that we have assumed that the errors in the data
points are independent, i.e., E(Ap;Ap;T) =0, for i # j. If the
errors in different data points are actually correlated, our
simplified assumption could result in an underestimate of
the actual covariance matrix. Also, the above analysis was
derived assuming that the noise is small. However, we
computed the covariance matrices for the configuration
described in Section 4, using both (5) and using a Monte
Carlo simulation, and found (5) is fairly accurate even for
noise levels much larger than in our application. For
example, using input noise with variance 225 mm?
(compared to the actual 0.0225 mm?2 in our application)
the largest deviation between the variances of the transla-

tional dimensions was 5.5 mm?2 (out of 83 mm?2).

3.2 Transformation of Covariance

We can transform a covariance matrix from one coordinate
frame to another. Assume that we have a six-element pose
vector x and its associated covariance matrix C,. Assume
that we apply a transformation, represented by a six-
element vector w, to x to create a new pose y. Denote y =
g(x, w). A Taylor series expansion yields Ay = JAx, where
J = (0g/0x). The covariance matrix Cy is found by:

C, = E(AyAy") = E [(JAX) (JAX)T}

(6)
=JE(AxAx")JT = JCJI".

A variation on this method is to assume that the
transformation w also has an associated covariance matrix
Cw- In this case, the covariance matrix Cy is:

Cy = JxCJL +J1,C, %, (7)

where Jy = (0g/0x) and Jyy = (0g/0w). The above analysis
was verified with Monte Carlo simulations, using both the
3D-to-3D algorithm and the 2D-to-3D algorithm.

3.3 Interpretation of Covariance

A useful interpretation of the covariance matrix is
obtained by assuming that the errors are jointly Gaussian.
The joint probability density for n-dimensional error
vector Ax is [37]:



HOFF AND VINCENT: ANALYSIS OF HEAD POSE ACCURACY IN AUGMENTED REALITY 5

p(Ax) = (|27r|N/2|CX|1/2>7lexp(—%AXTC;1Ax). (8)

If we look at surfaces of constant probability, the
argument of the exponent is a constant, given by the
relation Ax”C_'Ax =22 This is the equation of an
ellipsoid in n dimensions. For a given value of z, the
cumulative probability of an error vector being inside the
ellipsoid is P. For n = 3 dimensions, the ellipsoid defined by
z = 3 corresponds to a cumulative probability P of
approximately 97 percent.?

For a six-dimensional pose x, the covariance matrix Cy is
6 x 6 and the corresponding ellipsoid is six-dimensional
(which is difficult to visualize). However, we can select only
the 3D translational component of the pose and look at the
covariance matrix corresponding to it. Specifically, let z
(x, y, )T be the translational portion of the pose vector x =
(x,y,z, a, 3, 7)T. We obtain z from x using the equation z =
M x, where M is the matrix

100000
M={0 1000 0 (9)
001000

The covariance matrix for z is given by C; = M C, MT
(which is just the upper left 3 x 3 submatrix of Cy). We
can then visualize the uncertainty in position using the
three-dimensional ellipsoid corresponding to the set
{2l(z - 2)"C, " (z - 2)9}.

We can visualize the uncertainty in the rotational
component of the pose by finding the uncertainties in the
directions of the x, y, z axes of the coordinate frame
relative to the world frame. The orientation of a particular
axis a of the coordinate frame is found using
a=R(a, 3,7)e, where R(«, 3,7) is the rotation matrix of
the coordinate frame in the world and e is the relevant
unit vector in the world frame. Using the results of the
previous section, the covariance of a is given by
Ca:6%[R(a,ﬁ,y)e}Ce%[R(a,ﬁ,’y)e]T, where C. is the
3 x 3 lower right submatrix of C4 corresponding to the
angular uncertainty and Z[R(w, 3,7)e] is the Jacobian of
R(a, 3,7)e with respect to «, 3,7. C, is of rank 2 and the
ellipsoid associated with it will be “flat” in the direction
perpendicular to a. For visualization, these ellipsoids define
the bases of cones drawn about each axis and show how the
ends of the axis would move given the variation in the Euler
angles.

To illustrate these concepts, a simulation of a pose
estimation process was performed. A simulated target
pattern was created, attached to a coordinate frame A.
The pose of coordinate frame A with respect to a sensor S,
SH, was estimated using a 3D-to-3D algorithm. The
covariance matrix of the resulting pose, Cp, was computed
using (5). Fig. 1 shows a rendering of the ellipsoid
corresponding to the uncertainty of the translational
component of the pose. The ellipsoid is shown centered
at the origin of frame A. The rotational uncertainty is
depicted as elongated cones about each axis. Note that,
although the ellipsoid (representing the translational
uncertainty) is almost spherical, the cones (representing

3. The exact formula for the cumulative probability in N dimensions is
N

N 00 J— X2/
1= P = sompivrg Jo XV e X 2dX [37).

Fig. 1. A visualization of the uncertainty of the pose of a coordinate
frame. The ellipsoid, shown centered at the origin of the coordinate
frame, represents the uncertainty in the translational component of the
pose. The rotational uncertainty is depicted as elongated cones about
each axis.

the rotational uncertainty) are asymmetrical. The uncer-
tainty is greatest for rotations about the long axis of the
target pattern and, so, the cones perpendicular to that
axis are elongated. This is because the shorter dimension
of the target pattern provides less orientation constraint
than the longer dimension.

To illustrate the effect of transformations on covariance
matrices, another simulation of a pose estimation process
was performed. The target pattern used in Fig. 1 was
attached to coordinate frame A and the uncertainty of the
pose of A with respect to sensor S was computed. As shown
in Fig. 2, the translational component of the uncertainty is
represented by a small ellipsoid centered at A and the
rotational component of the uncertainty is represented by
elongated cones about each axis of A. Next, two other
objects with coordinate frames B and C were rigidly
attached to A, at known poses with respect to A. The
poses of B and C with respect to S were derived via
?H =SH{H and 2H = 5HJH, respectively. The covar-
iance matrices of these poses, Cp and Cc, were then
estimated using (6). The uncertainties of the translational
components of Cg and Cc are shown by the ellipsoids
centered at B and C, respectively.

Note that the ellipsoids for Cg and C¢ are much larger
than the ellipsoid for Ca, even though the relative poses of
B and C with respect to A are known exactly. This is due to
the orientation uncertainty in the pose of A with respect to
S, which gives rise to an uncertainty in the location of B and
C. The uncertainty is greatest in the plane perpendicular to
the line to object A—hence, the flattened shapes of the
ellipsoids associated with Cg and Cc. Note that the shape of
the flattened ellipsoids corresponds to the shape of the
cones about the axes perpendicular to the flattened parts.

In general, the component of translational uncertainty in
a frame B that is caused by the orientation error in A can be
estimated by AP = d Af, where Af is the orientation error
and d is the distance between A and B. Thus, the
uncertainty in the derived location of B grows with the
orientation uncertainty in A and also with the distance
between A and B. If one needs to track an object using a
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Fig. 2. The orientation uncertainty in the pose of a corrdinate frame A (with respect to sensor S) gives rise to translational uncertainties in the poses
of coordinate frames B and C. Two views are shown, taken from slightly different viewpoints. Note the highly flattened shapes of the ellipsoids for

frames B and C.

sensor and attaches a target pattern to the object in order to
do this, then the target pattern should be placed as close as
possible to the object to minimize the derived pose error.

Holloway [17] also noted a similar effect in his analysis
of registration errors in augmented reality systems. He
found that small errors in measuring the orientation of a
(fixed) tracking sensor in a world coordinate system could
lead to large errors in the derived position of a point in the
scene, due to the large “moment arm” of the tracker-to-
point distance.

3.4 Combining Pose Estimates
In this section, we develop a formula to combine two pose
estimates, weighted by their covariance matrices, following
the approach outlined by Bevington [38]. Let x1, xp be two
n-dimensional vectors, representing the measured values of
a quantity (e.g., a pose). Let Cq, Cp be their estimated n x n
covariances. We wish to find the most probable estimate of
the mean x.

According to (8), the probability densities of the
deviations of x; and xp from the unknown mean x are
given by (assuming Gaussian distribution of errors):

1 1
plaxy) = (251011 ") "exp( 5 G =207~ ) )

p(Axy) = (|27T\N/2|CQ|1/2) exp (— % (Xa —x)7C; (x2 — x)>
(10)

Assuming that xq, xp are uncorrelated, the joint prob-
ability is just the product of the above two expressions. The
maximum likelihood estimate of the parameter x is given by
maximizing the probability density function with respect to
x, which is equivalent to minimizing the argument of the
exponential:

a ((Xl — X)TC;I(xl — %)+ (x2 — x)Tcgl(xz — x)) =0.

dx
(11)

Taking the derivative and using the fact that the covariance
matrices are symmetric:

Cil(x1 — %) + C3l(xz2 — x) = 0. (12)
The most probable value of x is therefore given by:
x = C3(Cy 4+ C2) 'x1 + C1(C1 +Cs) 'x5. (13)
We take the total derivative of each side:
Ax = C3(Cq + Ca) "Ax; + C1(Cy + Co) "Axp.  (14)

To find the covariance of Ax, we take the expectation of
AxAxT:
E(AXAXT) =
= C3(Cy + Ca) "E(Ax;Ax])(Cy + C2) 'Cy
+C1(Cy + C2) ' E(AxsAXE) (Cy + C2) ' Cy
= C3(Cq + C3) 'C1(C1 + C2) 'Cy
+C1(Cy + C2) ' Cy(Cy + Co) ' C.

(15)

Since all the matrices are symmetric, we can rearrange and
simplify to get:

C =Cy(C;y +Co)'Cy. (16)

Therefore, this is a method of sensor fusion in an
augmented reality system. If the pose of the object with
respect to the HMD can be estimated using data from one
sensor (e.g., head-mounted) and the same pose can be
estimated from another sensor (e.g., fixed), then a combined
estimate can be produced using (13) and (16).

When combining pose estimates, we use a quaternion-
based representation of orientation, rather than xyz angles
or Euler angles. The reason is that xyz angles have a
problem for orientations where one angle is close to 180°. In
this case, one of the pose vectors may have a value for the
angle close to +180° and the other vector may have a value
close to —180°. Even though the two vectors represent very
similar orientations, the combined vector would represent a
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Fig. 3. An artificial hip joint includes a hemispherical metal cup that is
implanted into the patient’'s pelvis. To facilitate tracking, we attached
optical targets to the cup (upper black box) and to a peg inserted into the
pelvis (lower black box). Not the different geometric patterns of the two
5-LED targets.

wildly different orientation. Quaternions do not have this
problem.

4 DESCRIPTION OF EXPERIMENTAL AR SYSTEM

The method described above was applied to an experi-
mental augmented reality system, developed for a surgical
aid application, specifically, total hip joint replacement. The
purpose of the augmented reality system is to assist the
surgeon in implanting the acetabular component (a hemi-
spherical metal cup) into the patient’s pelvis, in a prescribed
orientation. Placing the acetabular component accurately is
important because an incorrect orientation can lead to
impingement, accelerated wear, and dislocation. We con-
centrated on the part of the system that tracks the implant
and displays a graphical overlay on the surgeon’s HMD
that is registered with the implant. To enable tracking of the
implant, an optical target was attached to the acetabular
implant, as shown in Fig. 3. To enable tracking of the
patient, another target was attached to a peg that was
rigidly attached to the pelvis (hammered into the bone).
Such pegs are normally used in hip surgeries anyway to aid
in leg length measurements, so this does not impose an
additional burden.

The prototype augmented reality system incorporates an
optical see-through HMD (Virtual i-o i-glasses) mounted on
a helmet (Fig. 4). A video signal (VGA format) is generated
by a desktop PC and transmitted to the HMD through a
cable tether. The field-of-view of the HMD is 30 degrees in
each eye. In Fig. 4, the helmet is shown mounted on a bust.
The bust incorporates a video camera at the location of the
user’s left eye so that we can record the actual view (with
overlays) that would be seen by a user (Fig. 5).

The hybrid sensor system incorporates two sensors: a
fixed sensor (Optotrak) and a head-mounted sensor (video
camera), described below.

Fig. 4. The augmented reality system incorporates an HMD, cameras,
and LED targets, all mounted on a helmet.

4.1 Fixed Sensor

The Optotrak 3020 system (Northern Digital Inc., Water-
loo, Canada) is a position tracking device which tracks
infrared LEDs by three fixed linear array CCD cameras.
The sensor was fastened to one wall of the laboratory.
The distance between the outermost two cameras is
approximately 90 cm.

At a range of 2.25 m, the stated RMS* accuracy of
locating a single LED is 0.15 mm in the direction along the
(Z) axis of the sensor and 0.1 mm in the directions
perpendicular to the axis. At 4 m, the accuracy is 0.45 mm
in Z and 0.3 mm in X, Y. The accuracy reported by the
manufacturer has been confirmed by Rohling et al. [39]. In
this project, the range between the sensor and the objects to
be tracked varied between 2.5 and 3 m. To simplify the
analysis, we assumed that the errors in 3D point measure-
ments were independent, normally distributed, and had a
constant standard deviation of 0.15 mm in all three
directions (X, Y, Z).

The LEDs are illuminated sequentially under the control
of the Optotrak control unit so that there is no ambiguity
about which LED is being observed at any instant. For each
LED target that is illuminated, the controller acquires the
data from the cameras and calculates (via triangulation) the
3D location of the target with respect to the sensor. From the
set of 3D point positions on a target body, the controller also
calculates the pose of the body with respect to the sensor,
using the quaternion-based algorithm described in Section 2.
The update rate of the system is dependent on the number
of target points being tracked. For 18 target points, we
measured an update rate of approximately 4 Hz.

An optical target, consisting of a set of six infrared LEDs,
is fastened to each object of interest, such as the acetabular
cup. Fig. 6 shows the six-point rectangular pattern, attached
by a white wire, mounted on the front side of the plastic box
attached to the cup. Infrared LEDs were also placed on the
helmet to form an optical target. Six LEDs were mounted in
a semicircular ring around the front half of the helmet, as
shown in Fig. 4. In most typical head poses, only four LEDs
were visible at one time to the sensor.

4. RMS = “ root mean square.”
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(@)

(b)

Fig. 5. (a) A view through the HMD (recorded from the “eye-piece” camera), showing a graphical overlay aligned with the optical target attached to
the acetabular implant component. The user adjusts the orientation of the implant to zero out the error between the current alignment and the desired
alignment (displayed as a crosshatched region). (b) The implant in the correct orientation.

4.2 Head-Mounted Sensor

Three micro-head CCD TV color cameras (Panasonic GP-
KS162) were mounted on the helmet. The camera lenses
have a nominal field of view of 44 degrees. For the work
described in this paper, we only used one camera (the left
camera). To simplify the analyses described below, we
assumed a square field of view.” The NTSC-format video
signal from the camera is transmitted to the PC through a
coaxial cable tether.

An optical target is affixed to each object of interest.
For this work, we used a pattern of five passively
illuminated green LEDs in a rectangular planar config-
uration (see top side of box in Fig. 6). The distinctive
geometric pattern of the LEDs enables the correspondence
to be easily determined [8].

The video signal is digitized by an image processing
board (Sharp GPB-1) in a 486-based PC to a resolution of
512 x 480 pixels, with 8 bits of gray scale intensity per pixel.
This board also performs low-level image processing
(thresholding and connected-component labeling) to extract
the image locations (centroids) of the LED targets. The
accuracy of measuring the 2D image location of a point in
an image has been well studied by many researchers,
including the author [40]. The error in the centroid of a
circular image feature due to quantization in the image
plane is approximately 0.1 to 0.3 pixels [41]. In addition,
there may be an additional 0.1 pixels or so of random
horizontal jitter introduced during the video digitization
process [42]. Therefore, we assumed a standard deviation of
0.5 pixels for the measured 2D image point locations. To
simplify the analysis, we also assumed that the errors were
uncorrelated and isotropic.

Pose estimation is done by the PC, using a 2D-to-3D
algorithm. The throughput currently achieved with the

5. Assuming a square field of view artificially restricts the usable image
area, but does not affect the accuracy results.

system described above is approximately 120 ms per update
iteration, or 8.3 Hz.

4.3 Coordinate Frames

To analyze the accuracy of our system, we focused on the
restricted problem of determining the pose of the acetabular
cup implant with respect to the head-mounted display.
Note that, in actual operation, the system also determines
the pose of the pelvis with respect to the HMD, in order to
compute the desired pose of the implant in the pelvis.

The principal coordinate frames used in the system are
listed and described in Table 1 and depicted schematically
in Fig. 7. Although this figure shows all frames as coplanar,
the transformations between frames are actually fully six-
dimensional (i.e., three translational and three rotational
components).

. |

Fig. 6. A rectangular pattern of six infrared LEDs (front site, attached by
cable) forms an optical target for the Optotrak sensor. A pattern of five
passive LEDs (top side) forms the optical target for the head mounted
camera.
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TABLE 1
Principal Coordinate Frames in the System
Frame Description
HMD Centered at left eyepiece of display
Implant Centered on implant component
HMD target Optical target mounted on helmet, tracked by fixed sensor
Camera Camera mounted on helmet

Implant target
Camera target

Optical target attached to implant, tracked by fixed sensor
Optical target attached to implant, tracked by head-mounted camera

To aid in visualizing these coordinate frames, a 3D
graphical display system was developed using a Silicon
Graphics computer and the “Open Inventor” graphics
software package. Fig. 8a shows a simplified representation
of the coordinate frames on the head: the HMD, the HMD
target, and the head-mounted camera. These coordinate
frames are rigidly mounted with respect to each other on
the helmet. The real helmet assembly is shown in Fig. 4.
Fig. 8b shows a simplified representation of the coordinate
frames attached to the implant: the implant, the implant
target, and the camera target. These coordinate frames are
also rigidly mounted with respect to each other. The real
implant assembly is shown in Fig. 6. The coordinate axes of
all frames are also shown.

Fig. 9a shows the entire room scene, consisting of the
fixed sensor on the back wall, the observer with the HMD,
and the patient on the table with the hip implant. Fig. 9b
shows a 3D visualization of the same scene.

5 ACCURACY ANALYSIS

The analysis method described earlier was applied to the
experimental augmented reality system to estimate the
accuracy of the derived implant-to-HMD pose. The analy-
tical model was implemented using the software applica-
tion Mathematica. The calculations consist of three main

steps. First, an estimate of implant-to-HMD pose is derived
using data obtained from the Optotrak (fixed) sensor alone.
Second, an estimate of implant-to-HMD pose is derived
using data obtained from the head-mounted camera alone.
Finally, the two estimates are fused to produce a single,
more accurate estimate. These steps are described in detail
below.

As an example, we determined numeric values for the
registration accuracy for a “typical” configuration of the
patient, surgeon, and sensors. The configuration shown in
Fig. 9 was analyzed and key numerical data describing the
configuration are given in Table 2. This is a “typical”
configuration in the sense that the distance from the
implant to the surgeon’s HMD is nominally arm’s length
(~70 cm). Also, the Optotrak sensor is placed reasonably
close to the patient (2.5 m) without interfering with the
surgery.

5.1 Analysis of Accuracy from Fixed Sensor

In this section, we analyze the accuracy of pose and
overlays using data from the fixed sensor alone. Using
data from the fixed sensor (Optotrak), we estimated the
pose of the HMD target (g’;;‘:}'g’ng) with respect to the
sensor, using the 3D-to-3D algorithm described earlier.
From the estimated error in each 3D-point measurement

{HMD
target

{Optotrak)

“ fimplant;

fmplant
target)

{Camera
target}

{Carmnera)

Legend:

é" {Coordinate frame}

— nown transformmation

= — = Measured transform ation

Dertved transform ation

Fig. 7. The principal coordinate frames are shown along with the transformations between them.
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HMD optical

target Camera

HMD

(@)

Implant

\

-

Camera target

(b)

Fig. 8. A 3D visualization of coordinate frames was developed. (a) The coordinate frames on the head are shown: the HMD (two circular disks), the
HMD target (flat plate), and the head-mounted camera (cylinder). (b) The coordinate frames on the implant: the acetabular implant (cup), the implant

target (six dot pattern), and the camera target (five dot pattern).

(@)

(b)

Fig. 9. A visualization of the entire scene, showing the fixed sensor on the wall, the HMD, and the object of interest, which is the hip implant. (a) The

real scene. (b) A 3D visualization.

(0.15 mm), the covariance matrix of the resulting pose was
determined. Using the known pose of the HMD with
respect to the HMD target (14" “"“H), the pose of the HMD
with respect to the sensor was estimated, using the equation
Optotrak gy — %’fl‘(’f}‘;ngg%T“m H. The covariance matrix of the
resulting pose was also estimated. The ellipsoids corre-
sponding to the uncertainties in the translational compo-
nents of the poses are shown in Fig. 10. In all figures in this
paper, the ellipsoids are drawn corresponding to a
cumulative probability of 97 percent. However, during
rendering, the ellipsoids are scaled up by a factor of 15 in
order to make them easily visible. The major axis of the
(unscaled) small ellipsoid in Fig. 10 is actually 0.32 mm; that
of the larger ellipsoid is 1.84 mm.

Note that this is the estimated error due only to the
random noise in the sensor data. This analysis does not take
into account systematic errors due to calibration, misalign-
ment of sensors, or other sources. Therefore, the error in an
actual system could be higher.

Next, the fixed sensor estimated the pose of the implant

Optotrak

target (;,,,7,,H1) with respect to the sensor, along with the

corresponding covariance matrix. Using the known pose of
the implant with respect to the implant target (Zﬁﬂff H), the
pose of the implant with respect to the sensor was
estimated, using ?n’i;‘}fng = ?g;;f}gi’;ﬂﬁgﬁ’;ﬂ. The covar-
iance matrix of the resulting pose was also estimated. The
ellipsoids corresponding to the uncertainties in the transla-

tional components of the poses are shown in Fig. 11. The
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TABLE 2
Parameters for the Typical Configuration

Parameter

Value

Pose of implant with respect to Optotrak

Pose of implant target with respect to implant
Pose of the camera target with respect to implant
Pose of the camera with respect to the HMD
Pose of the implant with respect to the HMD
Pose of the HMD target with respect to HMD
HMD field of view (assume square image)

HMD resolution (one side)

Head-mounted camera field of view (assume square
image)

Head-mounted camera resolution (one side)

-20.0°, 0.0°, -15.0°, 0 mm, 25 mm, 2500 mm
0.0°, 0.0°, 0.0°, 170 mm, -15 mm, -37 mm
-90.0°, 0.0°, 0.0°, 170 mm, -20 mm, 16 mm
0.0°, 0.0°, 0.0°, -100 mm, -100 mm, -150 mm
-67.0°, 137.5°, -5.0°, 0 mm, 0 mm, 689 mm
0.0°, 0.0°, 0.0°, 0 mm, -125 mm, -60 mm

30°

300 pixels

40°

512 pixels

Angles represent the rotation about the XYZ axes, respectively. Translations are along the XYZ axes.

major axis of the small ellipsoid in Fig. 11 is 0.34 mm; that of
the larger ellipsoid is 1.12 mm.

Finally, the pose of the implant with respect to the HMD
was estimated via fImd H(P) = Hmd  EOPOTH . The
covariance matrix of this pose was estimated and the
corresponding ellipsoid is shown in Fig. 12a. The major axis
of this ellipsoid is 8.23 mm. Note that the direction of
greatest uncertainty is nearly perpendicular to the line of
sight from the HMD to the implant, due to the orientation
uncertainty in the HMD. In fact, if the HMD target and the
HMD coordinate frames were co-located, the direction of
greatest uncertainty would be exactly perpendicular to the
HMD line of sight.

Finally, we performed an analysis of the accuracy of the
2D-image overlay in the HMD, using a Monte Carlo

simulation. The pose of the implant with respect to the

Uncertainty

ellipsoids \

(@)

HMD was calculated from noisy sensor data for 500 trials.
In each trial, we added random Gaussian-distributed noise
to the measurements from the Optotrak (using a 0.15 mm
standard deviation). The derived image point location of
the implant origin was then recorded. A cumulative plot of

the overlay points is shown in Fig. 12b. The uncertainty

Hmd

I7nplantH<Opw> was also projected

ellipsoid corresponding to
onto the image plane (using the 97 percent cumulative
probability surface, but drawn with scale factor = 1 rather
than 15). The distribution of the overlay points matches the
predicted distribution closely. The standard deviation of the
overlay points in the vertical direction is 2.19 pixels. This is
not a large error, but one that would easily be visible in a

high resolution HMD.

/
/

Uncertainty
ellipsoids

(b)

Fig. 10. The fixed sensor estimates the pose of the HMD target and its covariance matrix (small ellipsoid, barely visible). The image in (a) is redrawn
in (b) without the HMD and head models so that the ellipsoids are more easily visible. Using the known pose of the HMD with respect to the HMD
target, the pose of the HMD with respect to the sensor is then estimated, along with its covariance matrix (larger ellipsoid).



12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 6, NO.4, OCTOBER-DECEMBER 2000

— —

(@)

et pflTci kgt
I
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\ Uncertainty

ellipsoids

— ——
(b)

Fig. 11. The fixed sensor estimates the pose of the implant target and its covariance matrix (small ellipsoid, barely visible). The image in (a) is
redrawn in (b) without the implant and target models so that the ellipsoids are more easily visible. Using the known pose of the implant with respect to
the implant target, the pose of the implant with respect to the sensors is then estimated, along with its covariance matrix (larger flattened ellipsoid).

Uncertainty
ellipsoid

(@)

(b)

Fig. 12. (a) Using data from the fixed sensor alone, the pose of the implant with respect to the HMD is derived, along with its covariance matrix (large
ellipsoid). (b) The center of the 2D image from the HMD, showing the projection of the predicted uncertainty ellipsoid and a cumulative plot of
graphical overlay points from 500 random trials. The standard deviation of the overlay points in the vertical direction is 2.19 pixels.

5.2 Analysis of Accuracy from Head-Mounted
Sensor

In this section, we analyze the accuracy of pose and
overlays using data from the head-mounted sensor alone
for the same typical configuration of patient, surgeon, and
sensors. Using data from the head-mounted camera, we
estimated the pose of the camera target (gm’fﬁf’mH) with
respect to the camera, using the 2D-to-3D algorithm
described earlier. From the estimated error in each 2D-point
measurement (0.5 pixel), the covariance matrix of the
resulting pose was determined. Then, using the known
pose of the implant with respect to the camera target
(ﬁg}fﬂg ), the pose of the implant with respect to the
camera was estimated via {eraH = omer QH%’L’;}QTT‘:: YH. The
covariance matrix of the resulting pose was also estimated.
The ellipsoids corresponding to the uncertainties in the

translational components of the poses are shown in Fig. 13.

Uncertainty
ellipsoids

Fig. 13. Using the data from the head-mounted camera, the pose of the
camera target with respect to the camera is estimated, along with its
covariance matrix (long narrow ellipsoid). Using the known pose of the
implant with respect to the camera target, the pose of the implant with
respect to the camera is then estimated, along with its covariance matrix
(wide ellipsoid to the left).
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Uncertainty
ellipsoid

&

4

(@)

(b)

Fig. 14. (a) Using data from the head-mounted camera alone, the pose of the implant with respect to the HMD is computed, along with its covariance
matrix (large ellipsoid). (b) The center of the 2D image from the HDM, showing the projection of the predicted uncertainty ellipsoid and a cumulative
plot of graphical overlay points from 500 random trials. The standard deviation of the overlay points in the horizontal directions is 1.92 pixels.

Note the large uncertainty of the ellipsoid representing
gZ;ZeTTj,qH along the line of sight to the camera and very
small uncertainty perpendicular to the line of sight. This is
typical of poses that are estimated using the 2D-to-3D
method. The direction of greatest uncertainty of the camera
target is exactly aligned with the direction to the camera.
Intuitively, this may be explained as follows: A small
translation of the object parallel to the image plane results in
an easily measurable change in the image, meaning that the
uncertainty of translation is small in this plane. However, a
small translation of the object perpendicular to the image
plane generates only a very small image displacement,
meaning that the uncertainty of translation is large in this
direction. The major axis of the ellipsoid corresponding to
Gamera H s 24.6 mm. The major axis of the ellipsoid

CamTarg
corresponding to the derived pose, %g}“'“ H, is 19.9 mm.

ant

Next, the pose of the implant with respect to the HMD

: : Hmd (cam) _ Hmd Camera
was estimated, via 7,7,,H = CameraH rmplant - The

covariance matrix of this pose was estimated, and the
corresponding ellipsoid is shown in Fig. 14a. The major axis
of this ellipsoid is 19.9 mm. This ellipsoid was projected
onto the 2D image of the HMD, as shown in Fig. 14b.

Also shown in Fig. 14b are the results of a Monte Carlo
simulation of the 2D image overlay points. As in the
previous section, the pose of the implant with respect to the
HMD was calculated from noisy sensor data for 500 trials.
In each trial, we added random Gaussian-distributed noise
to the measurements from the head-mounted camera (using
a 0.5 pixel standard deviation). The derived image point
locations were then recorded. The standard deviation of the
overlay points in the horizontal direction is 1.92 pixels.

It is interesting to note that the overlay accuracy using
data from the head-mounted camera is comparable (actually
better) to the overlay accuracy using data from the Optotrak,
even though the 6 DOF pose is much less accurate. The
reason is that the uncertainty ellipsoid is oriented primarily
along the line of sight from the HMD so that the projected
uncertainty in the image plane is quite small.

5.3 Fusion of Data from Fixed and Head-Mounted
Sensors

The two pose estimates which were derived from the fixed
and head-mounted sensors can now be fused. We produced
a combined estimate of the implant-to-HMD pose, along
with its covariance matrix. The ellipsoids corresponding to
the three poses, fmd Hr) —lmd gl —and
fmd H™D are shown in Fig. 15a. Note that the large
ellipsoids, corresponding to ¢ H'*) and fImd  H ™),
are nearly orthogonal. The ellipsoid corresponding to the
combined pose, fImd H"" is much smaller and is
contained within the intersection volume of the larger
ellipsoids. Fig. 15b is a wire-frame rendering of the
ellipsoids, which allows the smaller interior ellipsoid to be
seen more easily. The major axis corresponding to the
uncertainty of the combined pose is only 1.47 mm.

Finally, we performed an analysis of the accuracy of the
2D image overlay in the HMD, using a Monte Carlo
simulation. As in the previous sections, we added random
Gaussian-distributed noise to the measurements from the
head-mounted camera and the Optotrak sensor, using the
same distributions as before. The derived image point
location of the resulting overlay was recorded for 500 runs.
A cumulative plot of the overlay points is shown in Fig. 15c,
along with the projection of the predicted uncertainty
ellipsoid corresponding to #md H"") The standard
deviation of the overlay points in the direction of maximum

error is 0.37 pixels.

5.4 Comparison to Measured Overlay Accuracy

We performed a partial experimental validation of the
accuracy analysis. We digitized actual images through the
left eyepiece of the head-mounted display while the HMD
was stationary and measured the repeatability of the
implant overlay position. We did not measure the absolute
accuracy of the overlay since this is dependent on many
other factors, including camera calibration, HMD calibra-
tion, model dimension errors, etc. We recorded the 2D
position of a point on the implant overlay for 124 con-
secutive images similar to Fig. 5. The standard deviations in
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Uncertainty ellipsoid
(derived from fixed sensor)

A

Uncertainty ellipsoi
(derived from
head-mounted sensor)

(@)

(b)

Fig. 15. (a) The ellipsoids from the fixed sensor and the head-mounted sensor are nearly orthogonal. The ellipsoid corresponding to the combined
estimate is much smaller and is contained in the volume of intersection. (b) The wire-frame rendering of the uncertainty ellipsoids allows the smaller
(combined estimate) ellipsoid to be seen. (c) The 2D image from the HMD, showing the projection of the predicted uncertainty ellipsoid and a
cumulative plot of graphical overlay points from 500 random trials. The standard deviation of the overlay points in the direction of maximum error is

0.37 pixels.

the location of the overlay point were 0.29 pixels and
0.48 pixels for the X and Y positions, respectively. This
closely matches the predicted maximum standard deviation
of 0.37 pixels, as computed in the previous section.

6 DiscussIioN

This paper has developed a method to analyze the head
pose accuracy in augmented reality systems. This can be
used to fuse sensor data from a combination of fixed and
head-mounted sensors in order to improve the registration
of objects with respect to a HMD. The method was applied
to an actual experimental augmented reality system for the
particular application of an orthopedic (hip) surgical aid. A
typical configuration was analyzed and it was shown that
the hybrid system produces a pose estimate (for the implant
with respect to the HMD) that is significantly more accurate
than that produced by either sensor acting alone. Using
only the fixed sensor, the maximum translational error in
any direction was 8.23 mm (corresponding to a 97 percent
confidence interval). Using only the head-mounted sensor,
the maximum translational error in any direction was
19.9 mm. By combining data from the two sensors, the
maximum translational error was reduced to 1.47 mm.

The errors in the 2D image graphical overlays are also
significantly reduced in the hybrid system. For the fixed
sensor alone, the standard deviation of the predicted image
overlay error was 2.19 pixels. For the head-mounted sensor
alone, the standard deviation was 1.92 pixels. For the
combined (hybrid) system, the standard deviation of the
overlay error was 0.37 pixels.

In order to fuse the pose estimates, the uncertainties are
explicitly calculated, in the form of covariance matrices. By
visualizing the uncertainties as 3D ellipsoids, new insights
can be gained. For example, given the measured pose of an
object (such as an optical target), in many cases it is
necessary to compute the pose of a second object attached to
the first object. From the calculated ellipsoids, it is easy to
see how the uncertainty in the position of the second object
can grow because of the orientation uncertainty in the
measured pose of the first object. This uncertainty grows
with the distance between the first and second objects.
Therefore, it is important to mount optical targets as close as
possible to the object of interest.

Pose estimates produced from either sensor acting alone
have uncertainties that are not isotropic. The uncertainty of
the pose derived from the fixed sensor has its largest
component perpendicular to the line of sight from the
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HMD. The uncertainty of the pose derived from the head-
mounted sensor has its largest component along the line of
sight from the HMD. This orthogonality greatly reduces the
uncertainty of the fused pose estimate.

An interesting result from this work is that the
performance of the head-mounted sensor alone is compar-
able (in terms of overlay error) to the performance of the
fixed sensor alone. This is surprising because pose estima-
tion accuracy of the head-mounted sensor system is not
nearly as good. However, the uncertainty of pose estimates
from the head-mounted sensor is primarily along the line of
sight from the HMD. When projected onto the 2D image of
the HMD, the apparent overlay errors are relatively small.
This is opposed to the errors from the fixed sensor which
are primarily perpendicular to the line of sight.

In our analytical model, we assume independent,
normally distributed errors in measured point locations.
This does not take into account systematic or correlated
errors, perhaps due to calibration errors. An alternative
analysis which does not depend on Gaussian or indepen-
dence properties of the noise would be to consider
unknown but bounded uncertainty, such as the theory
developed in [43]. This would provide a worst case set
description of the parameters given a priori bounds on the
magnitude of the uncertainty, but without requiring a
distribution function. The worst case analysis for augmen-
ted reality is the subject of current research.

Another direction for future research is dynamic regis-
tration. This paper has only considered quasi-static regis-
tration accuracy; that is, where objects are stationary when
viewed, but can freely be moved. It would be useful to
extend this work to enable accurate registration while
objects are moving. Inertial sensors (accelerometers and
gyroscopes) could be used to improve dynamic registration.
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