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Abstract 
The objective of this project was to develop and 
test a software system for the kinematic analysis 
of total joint arthroplasty (TJA) implants.  Using 
a supervised iterative optimization algorithm 
(simulated annealing), the system iteratively 
adjusts the pose of an implant model to 
maximize correlation between the model’s pose 
and the pose of an actual implant in a x-ray 
image.  A graphical user interface (GUI) was 
developed that provides visualization of the 
model-fitting process, and permits human 
guidance for error correction. The resulting 
system was evaluated to determine its accuracy 
and repeatability. On synthetic images, the mean 
translational and rotational errors were found to 
be 0.005 mm and 0.0015 degrees, respectively. 
On in vitro images, the repeatability was found 
to be 0.15 mm of translation and 0.17 degrees of 
rotation. The outcome is a working joint- 
measurement software system and quantitative 
data to support comparison with other methods.  

1 Introduction 

Arthritis afflicts millions of people, often 
resulting in progressive joint destruction in 
which cartilage is worn away.  This painfully 
dehabilitating condition is frequently treated 
with TJA, by replacing the arthritic joint with 
artificial implants (Figure 1).  
Common to most implant designs is a 
polyethylene insert, which replaces the cartilage 
of the normal knee and provides a low friction 
rotational surface for the metallic implant 
components. It has been shown that many TJA 
failures are caused by excessive wear of this 
polyethylene insert.  Specifically, the rapid wear 
of the polyethylene generates small particles, 

which lead to osteolysis (bone decay) and 
loosening of the implant components [1][2]. 

               
Figure 1  Artificial knee implant, with tibial component (left) 

and femoral component (right).  The white 
material is a polyethylene insert. 

Although artificial knee joints are expected to 
last over 15 years, research indicates that many 
implants fail within 10 years [3].  It is believed 
that abnormal sliding and rotational motions of 
implanted knees may lead to excessively high 
shear stresses on the polyethylene, thus 
accelerating wear.  Therefore, more knowledge 
of in vivo implant kinematics is needed so that 
implants that do not cause polyethylene failure 
can be designed. 
Recently, x-ray fluoroscopy has been shown to 
be a useful tool for analyzing joint kinematics in 
vivo [2][4][5].  The fluoroscopic process creates 
a perspective projection, where metallic 
implants appear much darker than the soft 
tissues surrounding them (Figure 2), allowing 
direct observation of the implant components’ 
silhouettes and their movements. 

                    
Figure 2  Fluoroscopy image of artificial knee. 
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There have been a number of algorithms 
described in the literature that estimate pose 
from silhouettes.  Banks and Hodge [4] and 
Hoff et al [6] used two-dimensional template 
matching to measure the pose of knee implants 
in fluoroscopy images.  Although successful, the 
template matching approach has a number of 
limitations.  The precision of the orientation 
measurement is limited by the resolution of the 
library (typically around 1°), and the accuracy 
may be further degraded by the use of a 
simplified perspective model.  Also, the object's 
contour must be segmented from the image 
prior to matching.  Finally, silhouette occlusions 
are not allowed, since a complete silhouette is 
needed to match the template. 
Lavallee, et. al. [7] describes an algorithm 
which minimizes the 3-D distances between 
projection rays to the points on the contour, and 
the closest point on the surface of the object in 
its hypothesized pose (Figure 3).  The algorithm 
is similar to the iterative closest point (ICP) 
approach of Besl and McKay [8], except that it 
uses 2-D image points as input instead of 3-D 
range data points.  There are no limits on 
accuracy due to reliance on a template library, 
and this method can handle occlusion.  
However, the process is computationally 
intense, pre-segmentation of the object contour 
is still required, and a good initial estimate of 
the solution must be provided in order to 
converge to the correct solution (unable to 
escape local minima). 
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Figure 3   Distances are computed from the projection rays 

to the surface of the object, for the object's pose. 

The purpose of this research was to develop and 
test a new fluoroscopy-based pose estimation 
method, which reduces or eliminates the 
problems of past techniques.  Specifically, the 
new method was designed to improve upon the 
accuracy, speed, repeatability, and flexibility of 
previous methods. 

2 Approach 

Our overall approach is to use a supervised 
optimization algorithm to minimize the error 
between a predicted and an actual x-ray 
silhouette. 
The choice of using a metric based on 2D 
measurements (rather than 3D) was motivated 
by the fact that modern computer graphics 
workstations (Silicon Graphics, Inc. Indigo2) 
can very quickly render 2D images of 3D 
objects (> 30 Hz), even for highly complex 
models.  By doing all computations in 2-D 
image space, we avoid expensive 3D 
computations of ray-to-surface distances.  
We also wanted to avoid explicit pre-
segmentation of the object silhouette in the 
image. In some cases, portions of the contour 
are difficult to extract automatically.  This can 
be due to occlusions, or to the presence of 
adjacent material with similar contrast.  For 
example, Figure 4 shows the magnitude of the 
gradient of the image in Figure 2.  Note the 
incomplete silhouette of the tibial (lower) 
implant.  

                     
Figure 4  Gradient magnitude image. 

Finally, we wished to completely remove the 
template library from the pose estimation 
process.  First, template libraries require a lot of 
time to make and room to store (must have 
unique template for each and every implant 
model).  Furthermore, they limit accuracy due to 
their limited resolutions and reliance upon 
interpolation.  Finally, template-matching is 
incapable of handling images that contain 
partially occluded implant silhouettes (a 
common occurrence in fluoroscopy images… 
see Section 4). 
Our approach incorporates the following 
elements:  (1) a matching algorithm which 
numerically evaluates the match between the 
observed image and the predicted image from 
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the current hypothesized pose, (2) a robust 
optimization algorithm, and (3) a method of 
supervisory control.  These elements are 
described in the following sections.  

2.1 Matching Algorithm  

To perform pose estimation, the matching 
algorithm requires two images as input.  The 
first image is a predicted x-ray image, created 
using the implant CAD model.  To render these 
images, the fluoroscope was modeled within the 
computer, using a software package named 
Open Inventor [9].  Figure 5 shows an example 
of a rendered image and its corresponding 
extracted silhouette.   

             
Figure 5  Predicted rendered image of the femoral model 

(left) and its silhouette (right).  

The second input image is the actual x-ray 
image taken from the fluoroscope.  Before 
matching, this image is inverted so that implant 
component pixels are white (as in the predicted 
image).  Then an edge detection operation 
(Roberts) is also performed (Figure 6). 

            
Figure 6  Input x-ray image, inverted (left) and edges (right). 

To estimate the match between the input x-ray 
image and the predicted x-ray image, two 
image-processing operations are used.  The first 
operation compares the pixel values of the two 
images, and the second operation evaluates the 
overlap of their contours (edges).  Both scores 
are obtained by multiplying the two images 
together, summing the result, and normalizing 
by the sum of the predicted image.  If G(x, y) is 
the input x-ray image (Figure 6, left) and H(x, 
y) is the predicted x-ray image (Figure 5, left), 
then the intensity matching score is: 

     Intensity Matching Score = 
∑
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The contour matching score is similarly 
calculated.  If J(x, y) is the input contour image 
(Figure 6, right) and K(x, y) is the predicted 
contour image (Figure 5, right), then the edge 
matching score is: 

     Contour Matching Score = 
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These two scores are then combined, with the 
contour matching value weighted more heavily 
than the area matching value.  By weighting the 
contour score more heavily than the area value, 
the contour score dominates when the CAD 
models are close to the true solution.  The 
weights of the intensity and contour scores were 
set to -1 and -2.67, respectively (determined 
experimentally)1.  
The resulting total matching score then produces 
a distinct peak when the CAD model is exactly 
aligned with the image of the implant in the 
input x-ray image.  Figure 7 is a 1D exhaustive 
plot of the matching score for an in vitro image 
(x-axis translation). 

          

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0

-70 -60 -50 -40 -30 -20 -10 0 10 20 30

 
Figure 7   Matching score for an in vitro  image as pose varies 

along x axis (dimensions in mm). 

2.2 Optimization Algorithm 

The choice of optimization algorithm depends 
on the characteristics of the function space to be 

                                                                 
1 Negative weights are used so that the best fit 
corresponds to a minimum of the objective function. 
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searched.  Our function space is six dimensional 
(corresponding to the number of degrees of 
freedom in the model pose) and contains 
numerous local minima.   
Figure 8 is an exhaustive plot of the matching 
score for an x-ray image, as the pose was varied 
in two rotational dimensions.  Note the two 
large minima and many smaller local minima.  
The global minimum (the correct solution) is the 
deeper of the two large minima.  The other large 
minimum is caused by the symmetry of the 
model (a tibial knee component), causing the 
silhouette to be very similar for two different 
orientations. 
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Figure 8  Matching scores for a x-ray image, as the x-

rotation and y-rotation angles were varied. 

Figure 9 shows the x-ray image from which the 
matching scores were derived.  The left image 
shows the tibial implant in the correct overlay 
position, which corresponds to the global 
minimum.  The right image shows the tibial 
implant component in the incorrect position, 
which corresponds to the other large minimum 
(Figure 8).  The two silhouettes are very similar, 
but different. 

    
Figure 9  Overlays corresponding to the two large minima in 

the previous figure.  (Left) Implant in correct 
pose.  (Right) Incorrect pose.  

To avoid these local minima, we selected a 
robust optimization algorithm called simulated 

annealing [10].  This method is a modified 
version of the Nelder-Mead [11] (downhill 
simplex) optimization method.  Simulated 
annealing employs a virtual temperature in order 
to escape local minima.  Specifically, the virtual 
temperature is used to randomly make some 
solutions appear more favorable than they 
actually are. As the temperature iteratively 
decreases, this possibility of “uphill” movement 
decreases as well.  In our application, the virtual 
temperature is decreased every ten iterations by 
multiplying the current temperature by 0.99.  By 
slowly lowering the virtual temperature in this 
manner, the algorithm is allowed escape local 
minima while searching for the global 
minimum. 

2.3 Supervisory Control 

Although the optimization algorithm can escape 
most (shallow) local minima, it occasionally 
gets stuck in a deeper minimum.  With a large 
enough temperature the algorithm could even 
escape  these large minima; however, we have 
found it to be more efficient to use an 
interactive approach.  In this approach, the 
human visually supervises the model-fitting 
process and can make corrections if necessary.   
A graphical user interface was developed 
(Figure 10) that allows the user to visualize and 
control the model fitting process. Visualization 
is accomplished by displaying the model as an 
overlay on the x-ray image, and by continuously 
updating the model’s position with the current 
optimization solution.  

            
Figure 10  The graphical user interface allows the user to 

easily visualize and control the progress of the 
model fitting process.   

If the system gets stuck in an incorrect pose, the 
user can temporarily seize control of the model 



Proc. of 36th Rocky Mountain Bioengineering Symposium, April 16-18, 1999, Copper Mountain, Colorado 

(using the mouse) and move it towards the 
correct pose. Releasing the mouse then allows 
the optimization algorithm to resume at the new 
pose.  This initializes the state vector closer to 
the solution, saving time by reducing the 
number of iterations needed to be performed. 
This approach is a form of traded control [12] 
which is used in supervised robot control.  The 
philosophy is that the system incorporates the 
best of both approaches.  It combines the speed 
and precision of the computer with the common 
sense and domain knowledge of the human.  
The resulting system is both efficient and 
reliable. 

3 Results 

Formal evaluations focused on determining the 
accuracy, reliability and speed of the system.  In 
addition, the system was tested for systematic 
bias and dependence of the accuracy upon the 
pose of the CAD models.   
A set of five synthetic x-ray images was created 
by rendering the CAD models in known poses.  
The images were corrupted with gaussian noise 
of magnitude equal to that observed in in vivo 
images (Figure 11).  

     
Figure 11  Three of the synthetic images used in evaluations. 

Five in vitro images were created using the 
fluoroscope.  The implants were fixed in a 
constant (but unknown) relative position, and 
images were captured as the implants were 
moved through the fluoroscope (Figure 12).  

        
Figure 12  Three of the  in vitro  images used in evaluations. 

In vivo images were not used during formal 
evaluations because the relative pose of the 
implants within them is not constant (patient is 
moving) and can not be determined.  

Three human subjects were used in the 
evaluations.  Prior to beginning, participants 
were trained on use of the interactive system.  
Training included familiarization with a 6 
degree of freedom spaceball (3D mouse), an 
explanation of the stopping criteria for each test, 
and a practice session using images similar to 
the test images.  Each subject was allowed to 
practice until all subjects achieved the same 
ability level.  During testing, the final pose (best 
fit) and elapsed time were recorded for each 
image.  Table 1 summarizes the accuracy, 
repeatability and speed values obtained from 
experimentation. 
Table 1  Summary of system performance (unlabeled units 

are in mm or degrees). 

   Accuracy     
(synthetic image) 

  Repeatability      
(in vitro  image) 

Time per image       
(both types) 

  Translations: 
    µ = 0.0053  
    σ = 0.0205  

   Translations: 
    σ = 0.15 

 Avg. user time: 
   µ = 75 sec 
   σ = 20.5 sec 

   Rotations: 
   µ = 0.0015  
   σ = 0.0117  

 Rotations: 
   σ = 0.17 

 Avg. total time: 
  µ = 349.4 sec 
  σ = 76.7 sec 

Statistical analysis showed no significant 
deviation of the data mean from zero, meaning 
that the system has no systematic bias 
(p=0.005).  However, the analysis showed that 
error was, in fact, dependent upon out-of-plane 
translation (error increases with negative z-axis 
translation). All other translations and rotations 
had no statistical effect on the error (p=0.005). 

4 Discussion 

Several forms of occlusion are common in 
fluoroscopy images.  The first form of occlusion 
results when implant silhouettes intersect each 
other due to the imaging perspective (see Figure 
11, right).  Another common form of occlusion 
is when an implant silhouette is partially off of 
the imaging plane (see Figure 13, left).  This 
happens because the patients are in motion 
during fluoroscopic surveillance. 
Our method is capable of handling images with 
partially occluded implant silhouettes.  This is 
possible because the interactive system finds the 
maximum correlation between the silhouette of 
the synthetic x-ray image and the remaining 
portion of the occluded implant silhouette.  
Even though a portion of the silhouette is 
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occluded, the maximum correlation still occurs 
in the correct pose.  Figure 13 illustrates this 
ability. 

              
Figure 13 Demonstration of successful overlay despite 

occlusion of implants. 

Additionally, an analysis on synthetic images 
containing 50% occlusion showed that the 
accuracy of the interactive system is the nearly 
the same for these images as for non-occluded 
images. 
A suggestion for future research is to use a more 
efficient optimization algorithm.  Simulated 
annealing, may visit incorrect solutions several 
times while performing function optimization. 
Other robust optimization algorithms exist, such 
as genetic algorithms [13], which may prove to 
be more efficient. Finally, we note that 
fluoroscopic image should be of good quality.  
Image distortion should be removed, and image 
clarity and contrast should be maximized in 
order to ensure accurate and reliable system 
performance. 
The kinematic analysis system presented in this 
paper is currently being used at Rose 
Musculoskeletal Research Laboratory (Denver, 
CO) to study various types of joint implants, 
including hips, ankles and temporomandibular 
joints (Figure 14), as well as knees. 

 
Figure 14 Applications of the system to hips, ankles, and 

TMJ implants (left to right). 
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