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Abstract

The objective of this project was to develop and
tes a software system for the kinematic andyss
of totd joint arthroplasty (TJA) implants.  Using
a aupevised iteative optimizetion agorithm
(@mulaed anneding), the sysem iterdivey
adusts the pose of an implant modd to
maximize corrdation between the modd’s pose
and the pose of an actud implant in a x-ray
image. A grgphicd user interface (GUI) was
developed that provides visudization of the
mode-fiting process, and permits  human
guidance for eror correction. The resulting
sysem was evauated to determine its accuracy
and repestability. On synthetic images, the mean
trandational and rotationd errors were found to
be 0.005 mm and 0.0015 degrees, respectively.
On in vitro images, the repegtability was found
to be 0.15 mm of trandation and 0.17 degrees of
rotation. The outcome is a working joint-
measurement  Oftware system and  quantitetive
data to support comparison with other methods.

1 Introduction

Arthritis  dfflicts  millions  of people  often
reulting in progressve joint dedruction in
which cartilage is worn away. This panfully
dehabilitati condition is frequently —trested
with TJA, replacing the arthritic joint with
atifiad implants (Figure 1).

Common to most implant desiﬁns is a
polyethylene insart, which replaces the cartilage
of the norma knee and provides a low friction
rotationd surface for the medlic implant
components. It has been shown that many TJA
falures are caused by excessve wear of this
polyethylene insert.  Specificdly, the rapid wear
of "the polyethylene generates smdl particles,

which lead to odgteolyss (bone decay) and
loosening of the implant components [1][2].

Figure 1 Artificial kneeimplant, with tibial component (left)
and femoral component (right). The white
material isa polyethyleneinsert.

Although artificid knee joints are expected to
last over 15 years, research indicates that many
implants fail within 10 years [3]. It is believed
that abnormd diding and rotationd motions of
implanted knees may lead to excessvey high
sher dresses on the polyethylene, thus
acceerating wear. Therefore, more knowledge
of in vivo implant kinematics is needed 0 that
implants that do not cause polyethylene falure
can be designed.

Recently, x-ray fluoroscopy has been shown to
be a useful tool for andyzing joint kinematics in
vivo [2][4][5]. The fluoroscopic process creates
a pespective projection, where metalic
implants gppear much darker than the soft
tissues surrounding them (Figure 2), dlowing
direct observetion of the implant components
dlhouettes and their movements.

Figure 2 Fluoroscopy image of artificial knee.
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There have been a number of agorithms
decribed in the literature that estimate pose
from glhouettes Banks and Hodge [4] and
Hoff et al [6] used two-dimensond template
matching to measure the pose of knee implants
in fluoroscopy images.  Although successful, the
template maiching agoproach has a number of
limitetions.  The precison of the orientation
measurement is limited by the resolution of the
library (typicdly around 1°), and the accuracy
may be further degraded the use of a
amplified perspective modd. Also, the object's
contour must be mented from the image
prior to matching. Fndly, dlhouette occusons
are not alowed, snce a complete slhouette is
needed to match the template.

Lavalles, et. al. describes an dgorithm
which minimizes the 3-D distances between
projection rays to the points on the contour, and
the closest point on the surface of the object in
its hypotheszed pose (Figure 3). The adgorithm
is dmilar to the iterative cdosest point (ICP)
approach of Bed and McKay [8], except that it
uses 2-D image points as input indead of 3-D
range data points. There are no limits on
acwrac}; due to reliance on a templae library,
and this mehod can handle occluson.
However, the process is computationdly
intense, preﬁmentation of the object contour
is gill required, and a good initid estimate of
the solution must be provided in order to
converge to the correct solution (unable to

ecape locd minima).

Silhouette
d = Closest N\
distance to A

surface

3D rays from
projection center

W

Figure 3 Distances are computed from the projection rays
to the surface of the object, for the object's pose.

The purpose of this research was to develop and
tes a new fluoroscopy-based pose estimation
method, which reduces or diminates the
problems of past techniques. Specificaly, the
new method was designed to improve upon the
accurecy, Speed, repeatability, and flexibility of
previous methods.

2 Approach

Our overdl approach is to use a supervised
optimization dgorithm to minimize the eror
between a predicted and an actud Xx-ray
slhouette.

The choice of usng a metric based on 2D
measurements (rather than 3D) was motivated
by the fact that modern computer graphics
workgations (Silicon Graphics, Inc. Indigo2)
can very quickly render 2D images of 3D
objects (> 30 Hz), even for highly complex
models. By doing dl computaiions in 2-D
image pace, we avoid expensve 3D
computations of ray-to-surface distances.

We dso waited to avoid explicit pre-
segmentation of the object dSlhouette in  the
image. In some cases, portions of the contour
are difficult to extract automaicaly. This can
be due to occlusons, or to the presence of
adjacent materid with smilar contrast.  For
example, Figure 4 shows the magnitude of the
gradient of the image in Fgure 2. Note the
incomplete  dlhouette of the tibid  (lower)
implant.

Figure4 Gradient magnitude image.

Findly, we wished to completely remove the
template library from the pose edimation
process. Firs, template libraries require a lot of
time to make and room to dore (must have
unique template for each and every implant
moadel). Furthermore, they limit accuracy due to
ther limited resolutions and reliance upon
interpolation. Findly, template-maiching is
incgpable of handling images that contain
patidly occluded Implant™ dglhouettes (a
common occurrence in  fluoroscopy  images...
see Section 4).

Our approach incorporates the  following
dements () a maching dgorithm which
numericaly evauates the match between the
obsarved Image and the predicted image from
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the current hypothesized anJ)ose, (20 a robust
optimization agorithm, (3 a mehod of
supervisory  control. These dements are
described in the following sections.

2.1 Matching Algorithm

To _Perform pose edimation, the maiching
dgorithm requires two images as input. The
fird image is a predicted x-ray image, created
usng the implant CAD modd. To render these
images, the fluoroscope was modded within the
computer, usng a software package named
Ofpen Inventor ?9]. Figure 5 shows an example
of a rendered 1mage and its corresponding
extracted silhouette.

Figure 5 Predicted rendered image of the femoral model
(left) and its silhouette (right).

The second input image is the actud x-ray
image taken from the fluoroscope.  Before
metching, this image is inverted so that implant
component pixels are white (as in the predicted
image). Then an edge detection operaion

Figure 6 Input x-ray image, inverted (left) and edges (right).

To edimate the match between the input x-ray
image and the predicted Xx-ray image, two
imege-processing operations are used. The first
operation comﬁares the pixel vadues of the two
images, and the second operation evauates the
over agt of their contours (edges). Both scores
ae obtaned by multiplying the two images
together, summing the result, and normdizing
by the sum of the predicted image. If G(X, y) IS
the input x-ray image (Figure 6, left) and H(x,
y) is the predicted x-ray image (Figure 5, I€ft),
then the intengty matching scorelis:

a G(x Y)H(xy)
(x.,y)
a H(xy)

(x,y)

The contour matching score is  gmilaly
caculated. If XX, y) is the input contour image
(Figure 6, right) and K(x, y) is the predicted
contour image (Figure 5, right), then the edge
matching scoreis

Intensity Matching Score =

a J(x Y)K(x )

(x,y)

a K(xy)

(x.y)

Contour Matching Score =

These two scores are then combined, with the
contour maiching vaue weghted more heavily
than the area matching value. By weighting the
contour score more heavily than the area vaue,
the contour score dominates when the CAD
models ae cloe to the true solution. The
weights of the intendty and contour scores were
set to -1 and -2.67, respectively (determined
experimentaly)”.

The resulting total matching score then produces
a distinct when the CAD modd is exactly
digned with the image of the implat in the
input x-ray image. HFgure 7 is a 1D exhaudive
plot of the matching score for an in vitro imege
(x-axistrandation).
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Figure7 Matching scorefor an in vitro image asposevaries
along x axis (dimensionsin mm).
2.2 Optimization Algorithm

The choice of optimization dgorithm d
on the characterigtics of the function space to be

! Negative weights are used so that the best fit
corresponds to a minimumof the objective function.
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searched. Our function space is sx dimensond
gcorr@pondi ng to the number of degrees of
reedom in the modd pose) and contans
numerous local minima

Figure 8 is an exhaudive plot of the maichi
score for an xray image, as the pose was vari

in two rotationd dimensons.  Note the two
large minima and gndler locd minima
The globd minimum (the correct solution) is the
deeper of the two large minima. The other lar
minimum is caused by the symmery of the
model (a tibiad knee component), causng the
dlhouette to be very smilar for two different
orientations.
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Figure 8 Matching scores for a xray image, as the x
rotation and y-rotation angles were varied.

Figure 9 shows the x-ray image from which the
matching scores were derived. The left image
shows the tibid implant in the correct overlay
postion, which corresponds to the globa
minmum.  The right image shows the tibid
implant component in the incorrect posgtion,
which corr to the other large minimum
(Figure 8). The two Slhouettes are very smilar,
but different.

Figure 9 Overlays corresponding to thetwo largeminimain
the previous figure. (Left) Implant in correct
pose. (Right) Incorrect pose.

To avoid these locd minima, we sdected a
robus optimization dgorithm cdled smulated

anneding #101.1 This method is a modified
verson of the Nede-Mead [11] (downhill
amplex) optimization  method. Smulated
anneding employs a virtua temperature in order
to escgpe locd minima Specificdly, the virtud
temperature is used to randomly make some
solutions gppear more favorable than they
actudly ae As the temperaure iteratively
decreases, this ibility of “uphill” movement
decreases as wdll. In our application, the virtud
temperature is decreased every ten iterations by
multiplying the current temperature by 0.99. By
dowly Iowern;rq the virtua temperaiure in this
manner, the dgorithm is dlowed escape loca
minima  while  seaching for the globd
minimum.

2.3 Supervisory Control

Although the optimization dgorithm can
mog (shdlow) locd minima it occasondly
gets suck in a degper minimum.  With a large
enough temperature the dagorithm could even
these large minima; however, we have
found it to be more efficent to use an
interactive qa)Froach. In this approach, the
human visudly supervisss the modd-fitting
process and can make corrections if necessary.

A grephicad usx inteface was developed
(Figure 10) that dlows the user to visudize and
control the moded fitting process. Visudization
is accomplished by displaying the modd as an
overlay on the x-ray image, and by continuoudy
updating the modd’s pogtion with the current
optimization solution.

........

Figure 10 The graphical user interface allows the user to
easily visualize and control the progress of the
model fitting process.

If the system gets stuck in an incorrect pose, the
user can temporarily seize control of the modd
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(usng the mouse) and move it towards the
correct pose. Releasing the mouse then dlows
the optimization agorithm to resume at the new
pose. This initidizes the date vector closer to
the solution, saving time reducing the
number of iterations needed to be performed.

This gpproach is a form of traded control [12]
which is used in supervised robot control. The
ngos‘)‘phy is that the system incorporates the

both approaches. It combines the speed
and precison of the computer with the common
sense and domain knowledgothof the human

The reaulting system efficent
religble,

3 Reaults

Formad evduations focused on determining the
accurecy, reliability and speed of the sysem. In
addition, the syfem was tested for "systematic
bias and dependence of the accuracy upon the
pose of the CAD models.

A st of five synthetic xray images was created
by rendering the CAD models in known poses.
The images were corrupted with gaussan noise
of magnitude equd to that observed in in vivo
images (Figure 11).
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Figure 11 Three of the synthetic imagesused in evaluations.

Five in vitro images were created usng the
fluoroscope. The implants were fixed in a
congant (but unknown) relaive podtion, and
images were captured as the implants were
moved through the fluoroscope (Figure 12).

99

Figure 12 Three of the in vitro images used in evaluations.

In vivo images were not used during formd
evauations because the rddive pose of the
implants within them is not congtant (patient is
moving) and can not be determined.

Three human subjects were used in  the
evduations.  Prior to beginning, participants
were traned on use of the interactive system.
Traning induded familiaizaion with "a 6
degree of freedom spacebdl (3D mouse), an
explanation of the stopping criteria for each tet,
and a practice sesson usng images similar to
the test images. Each subject was dlowed to
practice until al subjects achieved the same
ability level. During tedting, the find pose (best
fit) and elapsed time were recorded for each
image. Table 1 summarizes the accuracy,
repeatablllty and speed vdues obtained from
experimentation.

Table 1 Summary of system performance (unlabeled units
arein mm or degrees).

Accuracy Repeatahility
(syntheticimage)  (in vitro image)

Time per image
(both types)

Translations: Translations: Avg. user time:
m= 0.0053 s=015 m= 75 sec
s =0.0205 s =20.5sec
Rotations: Rotations: Avg. total time:
m= 0.0015 s =017 m= 349.4 sec
s =0.0117 S =76.7 seC

Satidgicd andyss showed no  ggnificant
deviation of the data mean from zero, meaning
that the sysem has no sysematic bias
(p=0.005). However, the andyss showed that
eror was, in fact, dependent upon out-of-plane
trandation (error incresses with negative zaxis
trandation). All other trandations and rotations
had no gatistica effect on the error (p=0.005).

4 Discussion

Seved forms of ocduson ae common in
fluoroscopy images.  The first form of occluson
results when implant silhouettes intersect each
other due to the Imaging perspective (see Figure
11, right). Another common form of occluson
is when an implant dlhowette is partidly off of
the imaging plane (see Figure 13, left). This
happens  because the lents ae in motion
during fluoroscopic surveillance.

Our method is capable of handling im: with
pa’tlle/ occluded  implant slhourégtes ag%ns is

ble because the mteractlve system finds the
ma><|mum corrddion between the dSlhouette of
the synthetic x-ray imege and the remaning
portion of the occluded implant slhouette.
Even though a portion of the dlhoudte is
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occluded, the maximum corrdation ill occurs
i%l_the correct pose. Fgure 13 illudrates this
ity.

Figure 13 Demonstration of successful overlay despite
occlusion of implants.

Additiondly, an andyss on gynthetic images
containing~ 50% uson showed tha the
accuracy of the interactive system is the nearly
the same for these images as for non-occluded
images.

A suggedtion for future research is to use a more
efident optimizetion dgorithm. Smulated
anneding, may vidt incorrect solutions severd
times while peforming function optimization.
Other robugt optimization agorithms exist, such
as genetic dgorithms [13], which may prove to
be more efficdent. Findly, we note tha
fluoroscopic im should be ofegood quality.
Image distortion should be removed, and image
claity and contrast should be maximized In
order to ensure accurate and relisble system
performance.

The kinemdtic and?/sis sysgem presented in this
R/Iaper is currently beng used a Rose

usculoskeletal Research Laboratory (Denver,
CO) to dudy various types of joint implants,
including hips, ankles and temporomandibular
joints (Hgure 14), as well as knees.

Figure 14 Applications of the system to hips, ankles, and
TMJ implants (Ieft to right).
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