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Abstract 

A methodology is developed to explicitly fuse sensor data from a combination 
of fixed and head-mounted sensors, in order to improve the registration of 
objects in an augmented reality system.  The methodology was applied to the 
analysis of an actual experimental augmented reality system, incorporating an 
optical see-through head-mounted display, a head-mounted CCD camera, and a 
fixed optical tracking sensor.  The purpose of the sensing system was to 
determine the position and orientation (pose) of a movable object with respect to 
the head-mounted display.  A typical configuration was analyzed and it was 
shown that the hybrid system produces a pose estimate that is significantly more 
accurate than that produced by either sensor acting alone.  Using only the fixed 
sensor, the maximum translational error in the location of an object with respect 
to the head-mounted display in any direction was 8.23 mm (corresponding to a 
97% confidence interval).  Using only the head-mounted sensor, the maximum 
translational error in any direction was 19.9 mm.  By combining data from the 
two sensors, the maximum translational error was reduced to 1.47 mm.  In order 
to fuse the pose estimates, the uncertainties are explicitly calculated, in the form 
of covariance matrices.  A capability was also developed to visualize the 
uncertainties as 3D ellipsoids. 

1 Introduction 

Where is an object of interest with respect to the user’s head?  In augmented 
reality systems that use head-mounted displays (HMD’s), knowing the relative 
position and orientation (pose) between object and head is crucial in order to 
display a virtual object that is aligned with the real object.  If the estimated pose 
of the object is inaccurate, the real and virtual objects may not be registered 
correctly.  Registration inaccuracy is one of the most imp ortant problems 
limiting augmented reality applications today [1].  

                                                                 
1 This work was supported by a grant from Johnson & Johnson Professional, Inc. 
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To determine the pose of an object with respect to the user’s head, tracking 
sensors are necessary.  Optical sensors use cameras or photo-effect sensors to 
track optical targets, such as light emitting diodes (LED’s) or passive fiducial 
markings [2] [3] [4].  Using two or more sensors (stereo vision), the three-
dimensional (3D) position of a target point can be determined directly via 
triangulation.  The accuracy of locating the point is improved by increasing the 
separation (baseline) between the sensors.  The full six degree-of-freedom 
(DOF) pose of a rigid body can be determined by measuring three or more target 
points on the body, assuming the geometry of the points on the body is known.  
This procedure is known as the “absolute orientation” problem in the 
photogrammetry literature.  Alternatively, a single sensor can be used to 
measure the 2D (image) locations of three or more target points on a rigid body.  
If the geometry of the points is known, the full 6 DOF pose of the rigid body can 
be estimated, by a procedure is known as “exterior orientation” [5]. 

One issue is where to locate the sensor and target.  One possibility is to mount 
the sensor at a fixed known location in the environment, and put targets on both 
the HMD and on the object of interest (a configuration called “outside in” [3]).  
We measure the pose of the HMD with respect to the sensor, and the pose of the 
object with respect to the sensor, and derive the relative pose of the object with 
respect to the HMD.  Another possibility is to mount the sensor on the HMD, 
and the target on the object of interest (a configuration called “inside out”).  We 
measure the pose of the object with respect to the sensor, and use the known 
sensor-to-HMD pose to derive the relative pose of the object with respect to the 
HMD.  Both approaches have been tried in the past, and each has advantages 
and disadvantages.   

With a fixed sensor (outside-in approach), there is no limitation on size and 
weight of the sensor.  Multiple cameras can be used, with a large baseline, to 
achieve highly accurate 3D measurements via triangulation.  For example, 
commercial optical measurement systems such as Northern Digital’s Optotrak 
have baselines of approximately 1 meter and are able to measure the 3-D 
positions of LED markers to an accuracy of less than 0.25 mm.  The orientation 
and position of a target pattern is then derived from the individual point 
positions.  A disadvantage with this approach is that head orientation must be 
inferred indirectly from the point positions. 

The inside-out approach has good registration accuracy, because a slight rotation 
of a head-mounted camera causes a large shift of a fixed target in the image.  
However, a disadvantage of this approach is that one it is impossible to put 
multiple cameras with a large baseline separation on the head.  Either a small 
baseline separation must be used, or alternatively a single camera can be used 
with the exterior orientation algorithm.  Either method gives rise to large 
translation errors along the line of sight of the cameras. 
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A question arises – is it possible to fuse the data from a head-mounted sensor 
and a fixed sensor, and derive a more accurate estimate of object-to-HMD pose?  
If the data from these two types of sensors are complementary, then the resulting 
pose can be much more accurate than that from each sensor used alone.  
Effectively, we can create a hybrid system that combines the “inside-out” and 
“outside-in” approaches. 

This paper describes a methodology to explicitly compute uncertainties of pose 
estimates, propagate these uncertainties from one coordinate system to another, 
and fuse pose estimates from multiple sensors.  The contribution of this work is 
the application of this methodology to the registration problem in augmented 
reality.  It is shown that a hybrid sensing system, combining both head-mounted 
and fixed sensors can improve registration accuracy.   

2 Background on Pose Estimation  

2.1 Representation of Pose 

The notation in this section follows that of Craig [6].  The pose of a rigid body 
{A} with respect to another coordinate system {B} can be represented by a six 

element vector ( )T
Aorg

B
Aorg

B
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(α,β,γ) are the angles of rotation of {A} about the (z,y,x) axes of {B}.  An 
alternative representation of orientation is to use three elements of a quaternion; 
the conversion between xyz angles and quaternions is straightforward.  
Equivalently, pose can be represented by a 4x4 homogeneous transformation 
matrix: 
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where RB
A  is a 3x3 rotation matrix.  In this paper, we shall use the letter X to 

designate a six-element pose vector and the letter H to designate the equivalent 
4x4 homogeneous transformation matrix. 

Homogeneous transformations are a convenient and elegant representation.  

Given a homogeneous point ( )TP
A

P
A

P
AA zyxP 1,,,= , represented in coordinate 

system {A}, it may be transformed to coordinate system {B} with a simple 
matrix multiplication PHP AB

A
B = .  The homogeneous matrix representing the 

pose of frame {B} with respect to frame {A} is just the inverse of the pose of 
{A} with respect to {B}; i.e., 1−= HH B

A
A
B .  Finally, if we know the pose of {A} 

with respect to {B}, and the pose of {B} with respect to {C}, then the pose of 
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{A} with respect to {C} is easily given by the matrix multiplication 
HHH B

A
C
B

C
A = . 

2.2 Pose Estimation Algorithms 

The problem of determining the pose of a rigid body, given an image from a 
single camera, is called the “exterior orientation” problem in photogrammetry.  
Specifically, we are given a set of 3D known points on the object (in the 
coordinate frame of the object), and the corresponding set of 2D measured 
image points from the camera, which are the perspective projections of the 3D 
points.  The internal parameters of the camera (focal length, principal point, etc.) 
are known.  The goal is to find the pose of the object with respect to the camera, 

Xcam
obj .  There are many solutions to the problem; in this work we used the 

algorithm described by Haralick [5], which uses an iterative non-linear least 
squares method.  The algorithm effectively minimizes the squared error between 
the measured 2D point locations and the predicted 2D point locations.   

The problem of determining the pose of a rigid body, given a set of 3D point 
measurements, is called the “absolute orientation” problem in photogrammetry.  
These 3D point measurements may have been obtained from a previous 
triangulation process, using a sensor consisting of multiple cameras.  
Specifically, we are given a set of 3D known points on the object {obj Pi}, and 
the corresponding set of 3D measured points from the sensor {sen Pi}.  The goal 
is to find the pose of the object with respect to the sensor, Xsen

obj .  There are 

many solutions to the problem; in this work we used the algorithm described by 
Horn [7] which uses a quaternion-based method. 

3 Determination and Manipulation of Pose 
Uncertainty 

Given that we have estimated the pose of an object, using one of the methods 
above, what is the uncertainty of the pose estimate?  Knowing the uncertainty is 
critical to fusing measurements from multiple sensors.  We can represent the 
uncertainty of a six-element pose vector X, by a 6x6 covariance matrix 

( )T
X XXEC ∆∆= , which is the expectation of the square of the difference 

between the estimate and the true vector.  This section describes methods to 
estimate the covariance matrix of a pose, transform the covariance matrix from 
one coordinate frame to another, and combine two pose estimates. 
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3.1 Computation of Covariance 

Assume that we have N measured data points from the sensor {P1, P2,..., PN}, 
and the corresponding points on the object {Q1, Q2, ... , QN}.  The object points 
Qi are 3D; the data points Pi are either 3D (in the case of 3D-to-3D pose 
estimation) or 2D (in the case of 2D-to-3D pose estimation).  We assume that 
the noise in each measured data point is independent, and the noise distribution 
of each point is given by a covariance matrix CP . 

Let Pi  = H(Qi,  X) be the function which transforms object points into data 
points.  In the case of 3D-to-3D pose estimation, this  is just a multiplication of 
Qi by the corresponding homogeneous transformation matrix.  In the case of 2D-
to-3D pose estimation, the function is composed of a transformation followed by 
a perspective projection.  An algorithm that solves for X est minimizes the sum of 
the squared errors.  Assume that have we solved for X est using the appropriate 
algorithm (i.e., 2D-to-3D or 3D-to-3D).  We then linearize the equation about 
the estimated solution X est: 

 ( ) ( ) X
X
HXQHXXQHPP

T

XQ
estiestiii

esti

∆







∂
∂

+≈∆+=∆+
,

,,  (2) 

Since Pi  = H(Qi,  Xest), the equation reduces to 
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where M i is the Jacobian of H, evaluated at (Qi, Xest).  Combining all the 
measurement equations, we get the matrix equation: 
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Solving for ∆X, we get ( ) PMMMX TT ∆=∆
−1

.  The covariance matrix of X is 

given by the expectation of the outer product: 
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Note that we have assumed that the errors in the data points are independent; 
i.e., E(∆Pi ∆Pj

T)=0, for i ≠ j.  (If the errors in different data points are actually 
correlated, our simplified assumption could result in an underestimate of the 
actual covariance matrix.)  The above analysis was verified with Monte Carlo 
simulations, using both the 3D-to-3D algorithm and the 2D-to-3D algorithm. 

3.2 Interpretation  of Covariance 

A useful interpretation of the covariance matrix can be obtained by assuming 
that the errors are jointly Gaussian.  The joint probability density for N-
dimensional error vector ∆X is [8]: 

 ( ) ( ) ( )XCXCXp X
T

X
N

∆∆−=∆ −
−

1
2
1

1212
exp2π  (6) 

If we look at surfaces of constant probability, the argument of the exponent is a 
constant, given by the relation 21 zXCX X

T =∆∆ − .  This is the equation of an 

ellipsoid in N dimensions.  For a given value of z, the cumulative probability of 
an error vector being inside the ellipsoid is P.  For N=3 dimensions, the ellipsoid 
defined by z=3 corresponds to a cumulative probability of approximately 97% 2. 

For a six-dimensional pose X, the covariance matrix CX is 6x6, and the 
corresponding ellipsoid is six dimensional (which is difficult to visualize).  
However, we can select only the 3D translational component of the pose, and 
look at the covariance matrix corresponding to it.  Specifically, let Z=(x,y,z) T be 
the translational portion of the pose vector X=(x,y,z,α,β,γ)T.  We obtain Z from 
X using the equation Z=M X, where M is the matrix 
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The covariance matrix for Z is given by CZ = M CX MT (which is just the upper 
left 3x3 submatrix of CX).  We can then visualize the three dimensional ellipsoid 
corresponding to CZ.   

3.3 Transformation of Covariance 

We can transform a covariance matrix from one coordinate frame to another.  
Assume that we have a six-element pose vector X and its associated covariance 
matrix CX.  Assume that we apply a transformation, represented by a six-
element vector W, to X to create a new pose Y.  Denote Y = g(X, W).  A Taylor 

                                                                 
2 The exact formula for the cumulative probability in N dimensions is 
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series expansion yields XJY ∆=∆ , where J = ( ∂g/∂X ).  The covariance 

matrix CY is found by: 

 ( ) ( )( )[ ] ( ) T
X

TTTT
Y JCJJXXEJXJXJEYYEC =∆∆=∆∆=∆∆=  (8) 

A variation on this method is to assume that the transformation W also has an 
associated covariance matrix CW.  In this case, the covariance matrix CY is: 
 T

WWW
T
XXXY JCJJCJC +=  (9) 

where JX = ( ∂g/∂X ) and JW = ( ∂g/∂W ).  The above analysis was verified with 
Monte Carlo simulations, using both the 3D-to-3D algorithm and the 2D-to-3D 
algorithm. 

3.4 Combining Pose Estimates 

Two vector quantities may be fused by averaging them, weighted by their 
covariance matrices.  Let X1, X2 be two N-dimensional vectors, and C1, C2 be 
their NxN covariance matrices.  Assuming X1 and X2 are uncorrelated, then the 
combined estimate X and the combined covariance matrix C may be found by 
the following equations3: 
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Therefore, this is a method of sensor fusion in the hybrid augmented reality 
system.  If the pose of an object with respect to the HMD can be estimated using 
data from the head-mounted sensor, and the same pose can be estimated using 
data from the fixed sensor, then a combined estimate can be produced using 
Equation 10. 

When combining pose estimates, we use a quaternion-based representation of 
orientation, rather than xyz angles or Euler angles.  The reason is that xyz angles 
have a problem for orientations where one angle is close to 180°.  In this case, 
one of the pose vectors may have a value for the angle close to +180°, and the 
other vector may have a value close to -180°.  Even though the two vectors 
represent very similar orientations, the combined vector would represent a 
wildly different orientation.  Quaternions do not have this problem. 

4 Experiments 

The methodology described in the previous sections was applied to an actual 
experimental augmented reality system developed in our lab.  The purpose of 

                                                                 

3 These equations can be derived from the discrete Kalman filter update equations, using 
X1 as the a priori estimate, X2 as the measurement, and X as the a posteriori estimate. 
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the system is to display a graphical overlay on an HMD, such that the overlay is 
registered to a movable object in the scene.  Only quasi-static registration is 
considered in this paper; that is, objects are stationary when viewed, but can 
freely be moved.  The system incorporates both head-mounted and fixed 
sensors.  The hybrid system was developed for a surgical aid application, but its 
capabilities are such that it could be used in many other applications. 

The first sub-section below describes the experimental setup, including the 
sensor and display characteristics.  Additional details of the system are described 
in [9].  In the second sub-section, the task itself is described.  Finally, an 
analysis of registration accuracy is performed. 

4.1 Description of Experimental AR System 

The prototype augmented reality system incorporates a see-through HMD 
(Virtual I-O i-glassesTM) mounted on a helmet (Figure 1, left).  A CCD camera 
with a field of view of 44 degrees is also mounted on the helmet. The NTSC-
format video signal from the camera is transmitted to a PC through a cable 
tether, which digitizes and processes the image.  An optical target is affixed to 
the object of interest (Figure 1, right).  For this work, we used a pattern of 5 
green LED’s, in a rectangular planar configuration.  The distinctive geometric 
pattern of the LED’s enables the correspondence to be easily determined [9]. 

The PC performs  low-level image processing to extract the image locations of 
the LED targets.  The noise in the 2D measured image point locations was 
assumed to be isotropic, with an estimated standard deviation of 0.5 pixels.  
Pose estimation is done using a 2D-to-3D algorithm.  The throughput currently 
achieved with the system is approximately 8.3 Hz.  

Our fixed sensor was an optical measurement system (Northern Digital Optotrak 
3020) fastened to one wall of the laboratory.  The sensor consists of three linear 
array CCD cameras.  An optical target, consisting of a set of six infrared LED's, 
is fastened to each object of interest.  The cameras detect each LED and 
calculate (via triangulation) its 3D location with respect to the sensor.  From the 
resulting set of 3D point positions on a target body, the controller also calculates 
the pose of the body with respect to the sensor.  For 18 target points, we 
measured an update rate of approximately 4 Hz. 

Infrared LED’s were also placed on the helmet, to form an optical target.  A set 
of 6 LED’s were mounted in a semi-circular ring around the front half of the 
helmet (Figure 1, left).  Typically, only 4 LED’s were visible at any one time.  
The measurement noise was assumed to be isotropic, with σ = 0.15 mm. 
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4.2 Description of Task 

The hybrid augmented reality system was developed for a surgical aid 
application; specifically, total hip joint replacement.  The purpose of the 
augmented reality system is to track a hip implant and display a graphical 
overlay on the HMD, that is registered to the implant.  Optical targets were 
attached to the implant to enable sensor tracking, as shown in Figure 1 (right).  
Separate LED targets were used for the head-mounted and fixed sensors. 

The principal coordinate frames used in the system are listed and described in 
Table 1, and depicted schematically in Figure 2.  Even though this figure shows 
all frames as co-planar, the transformations between frames are actually fully 
six-dimensional (i.e., three translational and three rotational components). 

To aid in visualizing these coordinate frames, a 3D graphical display system was 
developed using a Silicon Graphics workstation and the “Open Inventor” 
graphics package.  Figure 3 (left) shows a simplified representation of the 
coordinate frames on the head:  the HMD, the HMD target, and the head-
mounted camera.  These coordinate frames are rigidly mounted with respect to 
each other on the helmet. Figure 3 (right) shows a simplified representation of 
the coordinate frames attached to the implant:  the implant, the implant target, 
and the camera target.  These coordinate frames are also rigidly mounted with 
respect to each other.  (The real helmet and implant assemblies were shown in 
Figure 1.)  The coordinate axes of all frames are also shown. 

Figure 4 (left) shows the entire room scene, consisting of the fixed sensor on the 
back wall, the observer with the HMD, and the patient on the table with the hip 
implant.  Figure 4 (right) shows a 3D visualization of the same scene. 

4.3 Analysis of Registration Accuracy 

A simulation was imp lemented, using the software application Mathematica, to 
estimate the accuracy of the derived implant-to-HMD pose.  The processing 
consists of three main steps.  First, an estimate of implant-to-HMD pose is 
derived using data obtained from the Optotrak (fixed) sensor alone.  Second, an 
estimate of implant-to-HMD pose is derived using data obtained from the head-
mounted camera alone.  Finally, the two estimates are fused to produce a single, 
more accurate estimate.  These steps are described in detail below. 

4.3.1 Pose Estimation from Fixed Sensor 

Using data from the fixed sensor (Optotrak), we estimated the pose of the HMD 
target ( HOptotrak

HmdTarg ) with respect to the sensor, using the 3D-to-3D algorithm 

described earlier.  From the estimated error in each 3D point measurement (0.15 
mm), the covariance matrix of the resulting pose was determined.  Using the 
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known pose of the HMD with respect to the HMD target ( HHmdTarg
Hmd ), the pose of 

the HMD with respect to the sensor was estimated, using the equation 

HHH HmdTarg
Hmd

Optotrak
HmdTarg

Optotrak
Hmd = .  The covariance matrix of the resulting pose was 

also estimated.  The ellipsoids corresponding to the uncertainties in the 
translational components of the poses are shown in Figure 5 (left).  In all figures 
in this paper, the ellipsoids are drawn corresponding to a normalized distance of 
z=3; i.e., corresponding to a cumulative probability of 97%.  However, during 
rendering the ellipsoids are scaled up by a factor of 10 in order to make them 
more easily visible.  The major axis of the small ellipsoid in Figure 5 (left) is 
actually 0.32 mm; that of the larger ellipsoid is 1.84 mm. 

Next, the fixed sensor estimated the pose of the implant target ( HOptotrak
ImpTarg ) with 

respect to the sensor, along with the corresponding covariance matrix.  Using the 

known pose of the implant with respect to the implant target ( HImpTarg
Implant ), the pose 

of the implant with respect to the sensor was estimated, using 

HHH ImpTarg
Implant

Optotrak
ImpTarg

Optotrak
Implant = , along with its covariance matrix.  

Finally, the pose of the implant with respect to the HMD was estimated via.  

HHH Optotrak
Implant

Hmd
Optotrak

optoHmd
Implant =)( .  The covariance matrix of this pose was estimated 

using Equation 9.  The corresponding ellipsoid is shown in Figure 5 (right).  The 
major axis of this ellipsoid is 8.23 mm.  Note that the shape of this ellipsoid is 
elongated in the plane perpendicular to the line of sight, due to the orientation 
uncertainty in the HMD.   

4.3.2 Pose Estimation Using Head-Mounted Sensor 

Using data from the head-mounted camera, we estimated the pose of the camera 
target ( HCamera

CamTarg ) with respect to the camera, using the 2D-to-3D algorithm 

described earlier.  From the estimated error in each 2D-point measurement (0.5 
pixel), the covariance matrix of the resulting pose was determined.  Then, using 

the known pose of the implant with respect to the camera target ( HCamTarg
Implant ), the 

pose of the implant with respect to the camera was estimated, via 

HHH CamTarg
Implant

Camera
CamTarg

Camera
Implant = .  The covariance matrix of the resulting pose was also 

estimated.  The ellipsoids corresponding to the translational uncertainties are 
shown in Figure 6 (left).  The major axis of the ellipsoid corresponding to 

HCamera
CamTarg  is 24.6 mm.  The major axis of the ellipsoid corresponding to the 

derived pose, HCamera
Implant , is 19.9 mm. 

Note the large uncertainty of HCamera
CamTarg  along the line of sight to the camera, and 

very small uncertainty perpendicular to the line of sight.  This is typical of poses 
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that are estimated using the 2D-to-3D method.  Intuitively, this may be 
explained as follows.  A small translation of the object parallel to the image 
plane results in an easily measurable change in the image, meaning that the 
uncertainty of translation is small in this plane.  However, a small translation of 
the object perpendicular to the image plane generates only a very small image 
displacement, meaning that the uncertainty of translation is large in this 
direction.   

Next, the pose of the implant with respect to the HMD is estimated, via.  

HHH Camera
Implant

Hmd
Camera

camHmd
Implant =)( .  The covariance matrix of this pose was estimated 

using Equation 9.  The corresponding ellipsoid is shown in Figure 6 (right).  The 
major axis of this ellipsoid is 19.9 mm. 

4.3.3 Fusion of Data from Fixed and Head-Mounted 
Sensors 

The two pose estimates, which were derived from the fixed and head-mounted 
sensors, can now be fused.  Using Equation 10, we produce a combined estimate 
of the implant-to-HMD pose, along with the covariance matrix.  The ellipsoids 

corresponding to the three poses, )(optoHmd
Implant H , )(camHmd

Implant H , and )(hybridHmd
Implant H  

are shown in Figure 7.  Note that the large ellipsoids, corresponding to 
)(optoHmd

Implant H  and )(camHmd
Implant H , are nearly orthogonal.  The ellipsoid 

corresponding to the combined pose, )(hybridHmd
Implant H , is much smaller and is 

contained within the intersection volume of the larger ellipsoids.  The right 
image of Figure 7 is a wire-frame rendering of the ellipsoids, which allows the 
smaller interior ellipsoid to be seen.  The major axis corresponding to the 
uncertainty of the combined pose is only 1.47 mm. 

5 Summary 

This paper has developed a methodology to explicitly fuse sensor data from a 
combination of fixed and head-mounted sensors, in order to improve the 
registration of objects with respect to a HMD.  The methodology was applied to 
an actual experimental augmented reality system.  A typical configuration was 
analyzed and it was shown that the hybrid system produces a pose estimate that 
is significantly more accurate than that produced by either sensor acting alone.   
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Table 1   Principal coordinate frames in the system. 

Frame Description 
HMD Centered at left eyepiece of display 
Implant Centered on implant component 
HMD target Optical target mounted on helmet, tracked by fixed sensor 
Camera Camera mounted on helmet 
Implant target Optical target attached to implant, tracked by fixed sensor 
Camera target Optical target attached to implant, tracked by head-mounted camera 
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Figure 1  (Left) Prototype augmented reality system.  Only one of the cameras was 
used.  (Right) Five green LED's (top surface) form the optical target for the head 
mounted camera.  Six infrared LED’s (front surface) form an optical target for the 
Optotrak sensor.  Both targets are mounted on a box, which is attached to a hip 
implant component. 

{Implant}

{Optotrak}

{Implant
target}

{HMD}

{Camera
target}

{Camera}

{HMD
target}

Legend:

{Coordinate frame}

Known  transformation

Measured transformation
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Figure 2  The principal coordinate frames in the system are shown, along with the 
transformations between them. 
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Figure 3  The coordinate frames on the head (left) and on the implant (right). 

  
Figure 4  A visualization of the entire scene, showing the fixed sensor on the wall, 
the HMD, and the hip implant.  (Left) The real scene.  (Right) A 3D visualization. 

   
Figure 5  Uncertainties of poses derived from fixed sensor:  (Left) HMD target 
(small ellipsoid) and HMD (large ellipsoid).  (Right) Implant with repsect to HMD. 
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Figure 6 Uncertainties of poses derived from head camera:  (Left) Camera target 
(long narrow ellipsoid) and implant with respect to camera (wide ellipsoid).  (Right) 
Implant with respect to HMD. 

   
Figure 7  (Left) This figure depicts the fusion of the data.  Note that the ellipsoids 
from the fixed sensor and the head-mounted sensor are nearly orthogonal.  The 
ellipsoid corresponding to the resulting pose estimate is much smaller and is 
contained in the volume of intersection.  (Right) This wire-frame rendering of the 
uncertainty ellipsoids allows the smaller (combined estimate) ellipsoid to be seen, 
which is contained in the intersection of the two larger ellipsoids. 
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