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Abstract

A methodology is developed to explicitly fuse sensor data from a combination

of fixed and head-mounted sensors, in order to improve the registration of
objectsin an augmented reality system. The methodology was applied to the
analysis of an actual experimental augmented reality system, incorporating an
optical see-through head-mounted display, a head-mounted CCD camera, and a
fixed optical tracking sensor. The purpose of the sensing system was to
determine the position and orientation (pose) of a movable object with respect to
the head-mounted display. A typical configuration was analyzed and it was
shown that the hybrid system produces a pose estimate that is significantly more
accurate than that produced by either sensor acting alone. Using only the fixed
sensor, the maximum translational error in the location of an object with respect
to the head-mounted display in any direction was 8.23 mm (corresponding to a
97% confidenceinterval). Using only the head-mounted sensor, the maximum
trandational error in any direction was 19.9 mm. By combining datafrom the

two sensors, the maximum translational error was reduced to 1.47 mm. In order

to fuse the pose estimates, the uncertainties are explicitly calculated, in the form
of covariance matrices. A capability was also developed to visualize the
uncertainties as 3D ellipsoids.

1 Introduction

Where is an object of interest with respect to the user’ s head? I1n augmented
reality systems that use head-mounted displays (HMD’s), knowing the relative
position and orientation (pose) between object and head is crucial in order to
display avirtual object that is aligned with the real object. If the estimated pose
of the object isinaccurate, the real and virtual objects may not be registered
correctly. Registration inaccuracy is one of the most imp ortant problems
limiting augmented reality applications today [1].

1 Thiswork was supported by a grant from Johnson & Johnson Professional, Inc.



To determine the pose of an object with respect to the user’ s head, tracking
sensors are necessary. Optical sensors use cameras or photo-effect sensors to
track optical targets, such aslight emitting diodes (LED’ s) or passive fiducial
markings[2] [3] [4]. Using two or more sensors (stereo vision), the three-
dimensional (3D) position of atarget point can be determined directly via
triangulation. The accuracy of locating the point isimproved by increasing the
separation (baseline) between the sensors. The full six degree-of-freedom
(DOF) pose of arigid body can be determined by measuring three or more target
points on the body, assuming the geometry of the points on the body is known.
This procedureis known as the “absol ute orientation” problem in the
photogrammetry literature. Alternatively, asingle sensor can be used to
measure the 2D (image) locations of three or more target pointson arigid body.
If the geometry of the pointsis known, the full 6 DOF pose of the rigid body can
be estimated, by a procedure isknown as “exterior orientation” [5].

Oneissueiswhereto locate the sensor and target. One possibility isto mount
the sensor at afixed known location in the environment, and put targets on both
the HMD and on the object of interest (a configuration called “ outside in” [3]).
We measure the pose of the HMD with respect to the sensor, and the pose of the
object with respect to the sensor, and derive the relative pose of the object with
respect to the HMD. Another possibility isto mount the sensor on the HMD,
and the target on the object of interest (aconfiguration called “inside out”). We
measure the pose of the object with respect to the sensor, and use the known
sensor-to-HM D pose to derive the relative pose of the object with respect to the
HMD. Both approaches have been tried in the past, and each has advantages
and disadvantages.

With afixed sensor (outside-in approach), thereis no limitation on size and
weight of the sensor. Multiple cameras can be used, with alarge baseline, to
achieve highly accurate 3D measurements viatriangulation. For example,
commercial optical measurement systems such as Northern Digital’ s Optotrak
have baselines of approximately 1 meter and are able to measure the 3-D
positions of LED markersto an accuracy of lessthan 0.25 mm. The orientation
and position of atarget pattern isthen derived from the individual point
positions. A disadvantage with this approach is that head orientation must be
inferred indirectly from the point positions.

The inside-out approach has good registration accuracy, because a slight rotation
of ahead-mounted camera causes alarge shift of afixed target in the image.
However, a disadvantage of this approach isthat one it isimpossible to put
multiple cameras with alarge baseline separation on the head. Either asmall
baseline separation must be used, or aternatively a single camera can be used
with the exterior orientation algorithm. Either method givesriseto large
translation errors along the line of sight of the cameras.



A question arises—isit possible to fuse the data from a head-mounted sensor
and afixed sensor, and derive a more accurate estimate of object-to-HMD pose?
If the data from these two types of sensors are complementary, then the resulting
pose can be much more accurate than that from each sensor used alone.
Effectively, we can create a hybrid system that combines the “inside-out” and
“outside-in” approaches.

This paper describes a methodol ogy to explicitly compute uncertainties of pose
estimates, propagate these uncertainties from one coordinate system to another,
and fuse pose estimates from multiple sensors. The contribution of thiswork is
the application of this methodology to the registration problem in augmented
reality. Itisshown that ahybrid sensing system, combining both head-mounted
and fixed sensors can improve registration accuracy.

2 Background on Pose Estimation

2.1 Representation of Pose

The notation in this section follows that of Craig[6]. The pose of arigid body
{ A} with respect to another coordinate system { B} can be represented by asix

element vector JX = (Bonrg PV porg: - Zaorg A b, g)T , Where

®Poorg = (Bonrg Y rorg ,Bonrg)T isthe origin of frame { A} in frame { B}, and
(a,b,g arethe angles of rotation of { A} about the (z,y,x) axesof {B}. An
alternative representation of orientation isto use three elements of aquaternion;
the conversion between xyz angles and quaternionsis straightforward.
Equivalently, pose can be represented by a 4x4 homogeneous transformation
metrix:
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where ’R isa3x3rotation matrix. In this paper, we shall usetheletter X to
designate a six-element pose vector and the letter H to designate the equivalent
4x4 homogeneous transformation matrix.

Homogeneous transformations are a convenient and el egant representation.
Given ahomogeneous point *P = (AXP,AyP,AzP ,1)T , represented in coordinate
system { A}, it may be transformed to coordinate system { B} withasimple
matrix multiplication ®P=8H “P. The homogeneous matrix representing the
pose of frame { B} with respect to frame { A} isjust theinverse of the pose of
{A} withrespect to{B};i.e, fH=2H"*. Finaly, if we know the pose of { A}
with respect to { B}, and the pose of { B} with respect to { C}, then the pose of



{A} with respect to { C} iseasily given by the matrix multiplication
CH :CH BH
A B A '

2.2 Pose Estimation Algorithms

The problem of determining the pose of arigid body, given animage from a
single camera, is called the “exterior orientation” problem in photogrammetry.
Specifically, we are given a set of 3D known points on the object (in the
coordinate frame of the object), and the corresponding set of 2D measured
image points from the camera, which are the perspective projections of the 3D
points. Theinternal parameters of the camera (focal length, principal point, etc.)
areknown. Thegoal isto find the pose of the object with respect to the camera,

cam

a X - There are many solutions to the problem; in this work we used the

algorithm described by Haralick [5], which uses an iterative non-linear least
squares method. The algorithm effectively minimizes the squared error between
the measured 2D point locations and the predicted 2D point locations.

The problem of determining the pose of arigid body, given aset of 3D point
measurements, is called the “ absol ute orientation” problem in photogrammetry.
These 3D point measurements may have been obtained from a previous
triangul ation process, using a sensor consisting of multiple cameras.
Specifically, we are given a set of 3D known points on the object {°b' R}, and
the corresponding set of 3D measured points from the sensor {*"P}. The goal

isto find the pose of the object with respect to the sensor, &' X . Thereare

many solutions to the problem; in this work we used the algorithm described by
Horn [7] which uses a quaternion-based method.

3 Determination and Manipulation of Pose
Uncertainty

Given that we have estimated the pose of an object, using one of the methods
above, what is the uncertainty of the pose estimate? Knowing the uncertainty is
critical to fusing measurements from multiple sensors. We can represent the
uncertainty of a six-element pose vector X, by a6x6 covariance matrix

C, = E(DX DXT ) , which isthe expectation of the square of the difference
between the estimate and the true vector. This section describes methods to
estimate the covariance matrix of a pose, transform the covariance matrix from
one coordinate frame to another, and combine two pose estimates.



3.1 Computation of Covariance

Assume that we have N measured data points from the sensor { Py, P,,..., Pn},
and the corresponding points on the object { Q1, Qo, ..., Quv}. The object points
Q are 3D; the data points P; are either 3D (in the case of 3D-to-3D pose
estimation) or 2D (in the case of 2D-t0-3D pose estimation). We assume that
the noise in each measured data point isindependent, and the noise distribution
of each point is given by acovariance matrix Cp.

Leat P =H(Q, X) bethe function which transforms object pointsinto data
points. Inthe case of 3D-to-3D pose estimation, this isjust a multiplication of

Q by the corresponding homogeneous transformation matrix. In the case of 2D-
to-3D pose estimation, the function is composed of atransformation followed by
aperspective projection. An algorithm that solvesfor X g5 minimizes the sum of
the squared errors. Assume that have we solved for X ¢ using the appropriate
algorithm (i.e, 2D-to-3D or 3D-t0-3D). We then linearize the equation about

the estimated solution X e:
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Since P, =H(Q;, Xes), the equation reduces to
g o7
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where M; isthe Jacobian of H, evaluated at (Q;, Xeg). Combining al the
measurement equations, we get the matrix equation:
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Solving for DX, we get DX = (MTM )IMTDP . The covariance matrix of X is

given by the expectation of the outer product:
Cy = E[pxDXT)=
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Note that we have assumed that the errorsin the data points are independent;
i.e, E(DP, DP,T):O, forit j. (If theerrorsin different data points are actually
correlated, our simplified assumption could result in an underestimate of the
actual covariance matrix.) The above analysiswas verified with Monte Carlo
simulations, using both the 3D-to-3D algorithm and the 2D-to-3D agorithm.

3.2 Interpretation of Covariance

A useful interpretation of the covariance matrix can be obtained by assuming
that the errors are jointly Gaussian. The joint probability density for N-

dimensional error vector DX is[8]:
2 AR .
p(0%) = [2p["* fe[*) e (- 4Dx7c;DX) ©
If welook at surfaces of constant probability, the argument of the exponent isa
constant, given by therelation DXTC;!DX = z2. Thisisthe equation of an
elipsoidin N dimensions. For agiven value of z, the cumulative probability of

an error vector being inside the ellipsoid is P. For N=3 dimensions, the ellipsoid
defined by z=3 corresponds to a cumul ative probability of approximately 97% 2.

For asix-dimensional pose X, the covariance matrix Cyx is 6x6, and the
corresponding ellipsoid is six dimensional (which isdifficult to visualize).
However, we can select only the 3D translational component of the pose, and
look at the covariance matrix corresponding to it. Specifically, let Z=(x,y,2) " be
the translational portion of the pose vector X=(x,y,z,a,b,g)". We obtain Z from
X using the equation Z=M X, where M isthe matrix

g-;l. 0 000 05

M=¢c0O 1 0 0 O O? @
0 01 0 0 04

The covariance matrix for Z isgiven by C;= M Cx M (which isjust the upper
left 3x3 submatrix of Cx). We can then visualize the three dimensional ellipsoid
corresponding to Cs.

3.3 Transformation of Covariance

We can transform a covariance matrix from one coordinate frame to another.
Assume that we have a six-element pose vector X and its associated covariance
matrix Cx. Assume that we apply atransformation, represented by a six-
element vector W, to X to createanew pose Y. Denote Y =g(X, W). A Taylor

2 The exact formulafor the cumulative probability in N dimensionsis
¥
1- P= o) X N-1e X 2dx [g].
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series expansion yields DY =J DX , where J=( g/TX ). The covariance
matrix Cy isfound by:
C, =E(DYDYT)=E[(a DX (IDX)" |= JE(DX DX )3T =3C, 37 (8

A variation on this method is to assume that the transformation W also has an
associated covariance matrix Cyy. Inthiscase, the covariance matrix Cy is:

C, =J3,C, 3] +3,C, 37 ©

where Jx = (g/1X ) and Jy = (g/IW ). The above analysiswas verified with
Monte Carlo simulations, using both the 3D-to-3D agorithm and the 2D-to-3D
agorithm.

3.4 Combining Pose Estimates

Two vector quantities may be fused by averaging them, weighted by their
covariance matrices. Let X;, X, betwo N-dimensional vectors, and C;, C;, be
their NxN covariance matrices. Assuming X, and X, are uncorrelated, then the
combined estimate X and the combined covariance matrix C may be found by
the following equations:

X =C,(C,+C,) "X, +C,(C,+C,) M X,

C=C, (Cl + Cz)_lcl
Therefore, thisis amethod of sensor fusion in the hybrid augmented reality
system. If the pose of an object with respect to the HM D can be estimated using
data from the head-mounted sensor, and the same pose can be estimated using
data from the fixed sensor, then a combined estimate can be produced using
Equation 10.

(10

When combining pose estimates, we use a quaternion-based representation of
orientation, rather than xyz angles or Euler angles. The reason isthat xyz angles
have a problem for orientations where one angleis closeto 180°. In this case,
one of the pose vectors may have avalue for the angle close to +180°, and the
other vector may have avalue closeto-180°. Even though the two vectors
represent very similar orientations, the combined vector would represent a
wildly different orientation. Quaternions do not have this problem.

4 Experiments

The methodol ogy described in the previous sections was applied to an actual
experimental augmented reality system developed in our lab. The purpose of

3 These equations can be derived from the discrete Kalman filter update equations, using
X, astheapriori estimate, X, as the measurement, and X as the a posteriori etimate.



the system isto display agraphical overlay on an HMD, such that the overlay is
registered to amovable object in the scene. Only quasi-static registration is
considered in this paper; that is, objects are stationary when viewed, but can
freely be moved. The system incorporates both head-mounted and fixed
sensors. The hybrid system was devel oped for asurgical aid application, but its
capabilities are such that it could be used in many other applications.

Thefirst sub-section below describes the experimental setup, including the
sensor and display characteristics. Additional details of the system are described
in[9]. Inthe second sub-section, the task itself isdescribed. Finally, an
analysis of registration accuracy is performed.

4.1 Description of Experimental AR System

The prototype augmented reality system incorporates a see-through HMD
(Virtual 1-Oi-glasses™) mounted on ahelmet (Figure 1, left). A CCD camera
with afield of view of 44 degreesisalso mounted on the helmet. The NTSC-
format video signal from the camerais transmitted to a PC through acable
tether, which digitizes and processesthe image. An optical target is affixed to
the object of interest (Figure 1, right). For thiswork, we used a pattern of 5
green LED’s, in arectangular planar configuration. The distinctive geometric
pattern of the LED’ s enables the correspondence to be easily determined [9].

The PC performs low-level image processing to extract the image |ocations of
the LED targets. The noisein the 2D measured image point locations was
assumed to beisotropic, with an estimated standard deviation of 0.5 pixels.
Pose estimation is done using a 2D-to-3D agorithm. The throughput currently
achieved with the system is approximately 8.3 Hz.

Our fixed sensor was an optical measurement system (Northern Digital Optotrak
3020) fastened to one wall of the laboratory. The sensor consists of three linear
array CCD cameras. An optical target, consisting of aset of six infrared LED's,
isfastened to each object of interest. The cameras detect each LED and
calculate (viatriangulation) its 3D location with respect to the sensor. From the
resulting set of 3D point positions on atarget body, the controller also calculates
the pose of the body with respect to the sensor. For 18 target points, we
measured an update rate of approximately 4 Hz.

Infrared LED’ swere aso placed on the helmet, to form an optical target. A set
of 6 LED’ swere mounted in asemi-circular ring around the front half of the
helmet (Figure 1, left). Typically, only 4 LED’ swerevisible at any onetime.

The measurement noise was assumed to be isotropic, withs =0.15mm.



4.2 Description of Task

The hybrid augmented reality system was developed for asurgical aid
application; specifically, total hip joint replacement. The purpose of the
augmented reality system isto track a hip implant and display a graphical
overlay onthe HMD, that is registered to theimplant. Optical targetswere
attached to the implant to enable sensor tracking, as shown inFigure 1 (right).
Separate LED targets were used for the head-mounted and fixed sensors.

The principal coordinate frames used in the system are listed and described in
Table 1, and depicted schematically in Figure 2. Even though this figure shows
all frames as co-planar, the transformations between frames are actually fully
six-dimensional (i.e, three translational and three rotational components).

To aid in visualizing these coordinate frames, a 3D graphical display system was
developed using a Silicon Graphics workstation and the “ Open Inventor”
graphics package. Figure 3 (left) shows asimplified representation of the
coordinate frames on the head: the HMD, the HMD target, and the head-
mounted camera. These coordinate frames are rigidly mounted with respect to
each other on the helmet. Figure 3 (right) shows a simplified representation of
the coordinate frames attached to theimplant: theimplant, the implant target,
and the cameratarget. These coordinate frames are also rigidly mounted with
respect to each other. (Thereal helmet and implant assemblies were shown in
Figure 1.) The coordinate axes of all frames are also shown.

Figure 4 (1eft) shows the entire room scene, consisting of the fixed sensor on the
back wall, the observer with the HM D, and the patient on the table with the hip
implant. Figure 4 (right) shows a 3D visualization of the same scene.

4.3 Analysis of Registration Accuracy

A simulation wasimplemented, using the software application Mathemetica, to
estimate the accuracy of the derived implant-to-HMD pose. The processing
consists of three main steps. First, an estimate of implant-to-HMD pose is
derived using data obtained from the Optotrak (fixed) sensor alone. Second, an
estimate of implant-to-HMD poseis derived using data obtained from the head-
mounted cameraalone. Finaly, the two estimates are fused to produce asingle,
more accurate estimate. These steps are described in detail below.

4.3.1 Pose Estimation from Fixed Sensor

Using data from the fixed sensor (Optotrak), we estimated the pose of the HMD
target ( omaeH ) with respect to the sensor, using the 3D-to-3D algorithm

described earlier. From the estimated error in each 3D point measurement (0.15
mm), the covariance matrix of the resulting pose was determined. Using the



known pose of the HMD with respect to the HMD target ( "™29H ), the pose of

the HMD with respect to the sensor was estimated, using the equation

Optotrak |y — Optotrak HmdTarg, . . .
hmd H =hmaragtl  hmaHl - The covariance matrix of the resulting pose was

also estimated. The ellipsoids corresponding to the uncertaintiesin the
translational components of the poses are shown in Figure 5 (1eft). Inall figures
in this paper, the ellipsoids are drawn corresponding to a normalized distance of
z=3; i.e, corresponding to a cumulative probability of 97%. However, during
rendering the ellipsoids are scaled up by afactor of 10 in order to make them
more easily visible. The major axis of the small ellipsoid inFigure 5 (Ieft) is
actually 0.32 mm,; that of thelarger ellipsoid is 1.84 mm.

Next, the fixed sensor estimated the pose of the implant target ( e H ) with
respect to the sensor, along with the corresponding covariance matrix. Using the
known pose of the implant with respect to the implant target ('7%,4¢H ), the pose
of the implant with respect to the sensor was estimated, using

oo H =prerekH a9H |, along with its covariance matrix.

Finally, the pose of the implant with respect to the HMD was estimated via.
it H P9 =oacH ThieH . The covariance matrix of this pose was estimated

using Equation 9. The corresponding ellipsoid is shown inFigure 5 (right). The
major axis of thisellipsoid is8.23 mm. Note that the shape of thisellipsoid is
elongated in the plane perpendicular to the line of sight, due to the orientation
uncertainty in the HMD.

4.3.2 Pose Estimation Using Head-Mounted Sensor

Using data from the head-mounted camera, we estimated the pose of the camera
target ( Ca?ﬁ‘{ﬁ;% ) with respect to the camera, using the 2D-t0-3D algorithm

described earlier. From the estimated error in each 2D-point measurement (0.5
pixel), the covariance matrix of the resulting pose was determined. Then, using

the known pose of the implant with respect to the cameratarget (C?;”;Zn% H), the
pose of the implant with respect to the camera was estimated, via

ot H = cgarmeH Sia9H . The covariance matrix of the resulting pose was also
estimated. The ellipsoids corresponding to the translational uncertainties are
shown in Figure 6 (left). The major axis of the ellipsoid corresponding to

comte®H is24.6 mm. The major axis of the ellipsoid corresponding to the

derived pose, eeH ,is19.9 mm.

Note the large uncertainty of C;:;';';H along the line of sight to the camera, and
very small uncertainty perpendicular to the line of sight. Thisistypical of poses

10



that are estimated using the 2D-to-3D method. Intuitively, thismay be
explained asfollows. A small translation of the object parallel to theimage
plane resultsin an easily measurable change in the image, meaning that the
uncertainty of translationis small in this plane. However, asmall translation of
the object perpendicular to the image plane generates only avery small image
displacement, meaning that the uncertainty of translation islargein this
direction.

Next, the pose of the implant with respect to the HMD is estimated, via.

i H @ = mMH S48 . The covariance matrix of this pose was estimated

using Equation 9. The corresponding ellipsoid is shown in Figure 6 (right). The
major axis of thisellipsoidis19.9 mm.

4.3.3 Fusion of Data from Fixed and Head-Mounted
Sensors

The two pose estimates, which were derived from the fixed and head-mounted
sensors, can now be fused. Using Equation 10, we produce a combined estimate
of the implant-to-HMD pose, aong with the covariance matrix. The ellipsoids

corresponding to the three poses, i H @, | AdH 20 and | ArdH (M9

are shown inFigure 7. Note that the large ellipsoids, corresponding to

i H P and | I H ™ are nearly orthogonal. The ellipsoid
Hmd

corresponding to the combined pose, ,nmH ™™'?, ismuch smaller and is

contained within the intersection volume of the larger ellipsoids. The right
image of Figure 7 isawire-frame rendering of the ellipsoids, which allowsthe
smaller interior ellipsoid to be seen. The major axis corresponding to the
uncertainty of the combined poseisonly 1.47 mm.

5 Summary

This paper has developed a methodology to explicitly fuse sensor datafrom a
combination of fixed and head-mounted sensors, in order to improve the
registration of objects with respect to aHMD. The methodology was applied to
an actual experimental augmented reality system. A typica configuration was
analyzed and it was shown that the hybrid system produces a pose estimate that
issignificantly more accurate than that produced by either sensor acting alone.
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Tablel Principal coordinateframesin the system.

Frame Description

HMD Centered at left eyepiece of display

Implant Centered on implant component

HMD target Optical target mounted on helmet, tracked by fixed sensor

Camera Camera mounted on helmet

Implant target Optical target attached to implant, tracked by fixed sensor

Camera target Optical target attached to implant, tracked by head-mounted camera




Figurel (Left) Prototype augmented reality system. Only one of the cameraswas
used. (Right) Five green LED's (top surface) form the optical target for the head
mounted camera. Six infrared LED’s (front surface) form an optical target for the

Optotrak sensor. Both targetsare mounted on a box, which isattached to a hip
implant component.

{HMD
target}
{Camera}
/ Legend:
{Optotrak} » 9
/
/
/
é_» é" {Coordinate frame}
\\ mmm— Known transformation
\  {implant} = = = Measured transformation
\ Derived transformation
\
\
{Implant (Camera
target} target}

Figure2 The principal coordinate framesin the system are shown, along with the
transfor mations between them.
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HMVD Camera
optical
target

Implant Camera target

HMD

Implant
target

Figure 3 Thecoordinate frames on the head (left) and on theimplant (right).

S [ Y

Figure4 A visualization of the entire scene, showing the fixed sensor on thewall,
theHMD, and the hipimplant. (Left) Thereal scene. (Right) A 3D visualization.

Uncertainty
ellipsoids Uncertainty
- ellipsoid

Figure5 Uncertainties of posesderived from fixed sensor: (Left) HMD target
(small ellipsoid) and HMD (large ellipsoid). (Right) Implant with repsect to HMD.
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Uncertainty

ellipsoids Uncertainty
T ellipsoid

Figure 6 Uncertainties of posesderived from head camera: (Left) Camera target
(long narrow ellipsoid) and implant with respect to camera (wide ellipsoid). (Right)
Implant with respect to HMD.

Uncertainty ellipsoid
(derived from fixed
sensor)

Uncertainty ellipsoid
(derived from head- ‘

mounted sensor)

[

Figure7 (Left) Thisfiguredepictsthefusion of thedata. Notethat theellipsoids
from the fixed sensor and the head-mounted sensor are nearly orthogonal. The
ellipsoid corresponding to theresulting pose estimate is much smaller and is
contained in the volume of intersection. (Right) Thiswire-frame rendering of the
uncertainty ellipsoids allows the smaller (combined estimate) ellipsoid to be seen,
which iscontained in the inter section of thetwo larger ellipsoids.
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