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Abstract
Sensing to recognize and locate objects is a critical

need for robotic operations in unstructured environments.
An accurate 3-D model of objects in the scene is necessary
for efficient high level control of robots.  Drawing upon
concepts from supervisory control, we have developed an
interactive system for creating object models from range
data, based on simulated annealing.  Site modeling is a
task that is typically performed using purely manual or
autonomous techniques, each of which has inherent
strengths and weaknesses.  However, an interactive
modeling system combines the advantages of both manual
and autonomous methods, to create a system that has high
operator productivity as well as high flexibility and
robustness.  Our system is unique in that it can work with
very sparse range data, tolerate occlusions, and tolerate
cluttered scenes.  We have performed an informal
evaluation with four operators on 16 different scenes, and
have shown that the interactive system is superior to
either manual or automatic methods in terms of task time
and accuracy.  

I. Introduction

In hazardous applications such as remediation of
buried waste and dismantlement of radioactive facilities,
robots are an attractive solution.  Such environments are
typically unstructured, in the sense that the types and
locations of objects are not known in advance.

Control of robots and machinery for use in such
operations ranges from full manual control (direct
teleoperation by a human operator) to full automatic
control (no input from a human operator).  Between these
two extremes lies a paradigm called supervisory control
[1], which allows the system to perform low level tasks
automatically under the supervision of a human operator.
Supervisory control is a promising technique for near term
operations: it retains the flexibility of human intelligence
to respond to unforeseen events and combines it with the

speed and accuracy of the computer for performing low-
level tasks [2].

In order for the system to perform low level tasks
under supervisory control, three-dimensional (3-D)
graphical models are needed which accurately represent the
location, type, shape, etc., of objects in the scene [3].
For certain environments, blueprints and architectural
drawings may exist, but these cannot be relied upon to be
accurate.  In unstructured environments, the 3-D site
model must be created from sensor data.  

The usual practice in creating object models is to
physically measure their locations and then manually
create them in software or with an interactive user
interface.  However, this is a time consuming task, and
one that should be avoided in a hazardous environment.
Some systems allow the locations of objects to be
measured remotely, using a range finder or other sensor.
However, the human operator still must manually create
the object model, using the location information as a
guide.  Also, it is not sufficient to specify just the
location of the object — the model requires the object
orientation, as well as any other parameters describing its
size, shape, etc.  

Two dimensional (2-D) video images and/or three
dimensional (3-D) range images can provide the necessary
data to create object models.  Past work on object
modeling has been either primarily manual or primarily
automatic.  Manual techniques have the disadvantage of
requiring a substantial amount of effort from the human
operator.  Automatic techniques have been limited in
performance and reliability.  Most automatic systems are
limited to recognizing a small number of simple object
models, in clean, uncluttered scenes.  The generality and
flexibility of current systems is very limited, especially
for those that use image data (as opposed to range data).
Therefore, there is a need for techniques which are more
automated, but are robust and flexible in dealing with new
environments.

In this paper, we describe supervisory techniques that
we have developed for creating object models, that have
been shown to be highly robust and flexible.  These
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techniques are interactive; that is, they use the human to
guide the sensing system in creating and updating models
of objects.  The motivation for using interactive
techniques is that purely manual and purely automatic
techniques both have disadvantages.  However, a hybrid
system has the potential to combine the best attributes of
each to create a system that has high operator productivity
as well as high flexibility and robustness.  The strategy is
similar to the use of the human in supervisory control, in
which human intelligence and machine intelligence are
integrated to create a more powerful system that uses the
best elements from each component.  The human provides
high level reasoning and overall guidance; the computer
provides quantitative analysis and repeatable operation.
Thus, we have extended the supervisory control paradigm
to sensing.

We have developed a system which uses sparse, noisy
range data (about 50 - 100 points per object) obtained
from a stereo vision sensor.  The operator can interact
with the system through a combination of traded and
shared control, to create models of objects in the scene.
We have evaluated our system with a combination of
synthetic and real scenes.  In informal tests with four
operators, we have shown that the supervisory system is
superior (in terms of task time and accuracy) over purely
manual and purely automatic modeling.  Our effort is
unique by virtue of the use of the interactive techniques,
sparse range data collected from stereo vision and other
sources, and an optimization technique called simulated
annealing for fitting primitive 3-D object models to the
range data.

The rest of our paper is organized as follows:  Section
II covers background information related to object
modeling; Section III gives an overview of our system;
Section IV describes implementation details and
experimental results; and Section V provides conclusions.

II. Background

Past work on creating object models has generally
fallen into the categories of primarily manual or primarily
automatic.  With primarily manual systems, the operator
creates, sizes, and places a graphical object model to
correspond to a physical object that he or she observes in
the scene. In Sandia’s Graphical Programming System
[3], the operator can control the robot to touch an object
with a probe in order to determine its position.  Other
systems use the operator to examine imagery obtained
from sensors and create object models to fit the observed
objects [4, 5].  Other related work includes
photogrammetric reconstruction from still photographs,
developed by TRW and Vexcel Corp.  In all these
systems, the operator rather than the computer, performs

the bulk of the work in creating and specifying the
attributes of the model.

In the category of primarily automatic systems, much
work has been done in the computer vision field on
automatically recognizing and creating models from range
data.  Here, we wish to draw a distinction between
techniques which just construct a surface map [6] or
occupancy map [7] of the scene, and those (like ours)
which fit geometric  models to discrete objects in the
scene.  In the latter class of techniques, researchers have
developed systems to fit superquadric volumetric
primitives [8], generalized cylinders [9], and parametric
geons [10], to range data.  Hebert, et al [11]  use the
operator to select an initial region of interest in the image,
then automatically fits a cylinder to the surface data.

Other work matches a specific object model to range
data.  For example, Grimson, et al matches a model
derived from MRI data to laser range data [12].  Besl and
McKay [13] register two 3-D shapes using the iterative
closest point algorithm.  Most techniques use an iterative
algorithm to find a solution, either based on least squares
or Kalman filtering [14].

Most previous work does not address the
segmentation of the data – i.e. , how to automatically
distinguish points on the object from points in the
background.  Also, the objects must be relatively
unoccluded for the model fitting to converge correctly.  In
typical unstructured environments, such as a drum half
buried in a landfill, these techniques could not correctly
create the object model.  Finally, most algorithms require
fairly dense range data with many points on the object of
interest.

Recently, researchers have argued that fully automated
systems for object recognition and modeling are currently
incapable of matching the human’s ability to employ
background knowledge, common sense, and reasoning.
One way to increase the flexibility of a computer vision
system is to allow an outside entity, such as a human, to
provide context and constraints to the vision system.
This approach has been used successfully in the domain of
overhead image interpretation.  Recently, under DARPA’s
RADIUS project, much work has gone toward automating
portions of the interpretation process, using image
understanding techniques [15].  Much success has been
achieved by developing interactive techniques to extract
building and road models [16].  For example, an image
analyst can provide an initial approximation for a building
outline and let the vision system perform local
optimization of the variables to fit the data [17].
Although these techniques are promising, they have been
applied only to the overhead image interpretation domain
(primarily 2-D).  They must be modified to apply them to
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the robotic domain (primarily 3-D), and in which
viewpoints are much more unconstrained.

III. Detailed Description

Our system consists of three main functional
elements:  (1) a source of range data points, (2) a model
fitting algorithm, and (3) interactive (supervisory)
techniques.  These are discussed in the sections below.

A.  Stereo Vision Sensor

We have developed a stereo vision sensor for
obtaining range data; that is, a computer vision system
which accepts images from multiple cameras,
automatically matches points between the images and
computes the range via triangulation.  Measuring range
via stereo vision is widely considered to be a difficult
problem due to the difficulty in correctly matching points
between the two images.  The resulting range values may
be sparse and ambiguous (because of non-unique matches).
We chose stereo because (a) it is a more challenging
sensor  (if our techniques work well with stereo, it is
highly probable that they will work with active sensors),
and (b) stereo has potential advantages of cost, size, and
mechanical reliability over active sensors.  However, our
system can work with any source of range data, and we
have in fact used it with data from a structured light
sensor.

Our system uses three cameras in a trinocular
arrangement.  The purpose of the third camera is to
eliminate matching errors between the first two cameras
[18].  An example of a trinocular set of images is shown
in Figure 1.

Figure  1   Top ,  l e f t ,  and  r igh t  images  f rom s t e reo
v i s i o n  s y s t e m .

The stereo vision system detects “interest” points in
the left and right images, and matches them using a cross-
correlation technique.  Each candidate match determines a
point in 3-D.  These points are checked by verifying their
presence in the predicted location in the top image.
Points which are not verified are eliminated.  Figure 2
shows the final range points as cross-hairs overlaid on the
left image.

Figure  2   Final  range  data  points  (crosshairs ) .

We have tested the system on 13 real scenes and
numerous synthetic scenes.  On the average, the system
produced 88 3-D points per scene.  We manually examined
these and found an average of 4 faulty matches remaining
per scene (these points typically have a large range error).

B. Model Fitting Algorithm

An algorithm has been developed to fit geometric
primitive models to range data.  The algorithm iteratively
adjusts a state vector representing the parameters of the
model in order to minimize the error distances between the
range data points and the nearest point on the surface of
the model.  Currently, the state vector represents only the
location and orientation (6 DOF) of the model, although
we are extending it to include parameters describing size
and shape.  The algorithm uses the “downhill simplex”
method to search for the minimum [19].  However, there
is a strong possibility that the algorithm will get stuck in
a local minima, which may be far from the true solution.  

To avoid this, a simulated annealing algorithm [20] is
built on top of the downhill simplex algorithm.  The
simulated annealing algorithm allows the solution to
occasionally move to a point with higher (worse) error.
This usually allows the algorithm to escape local minima
and eventually find the global minimum.  A “temperature”
parameter controls the probability of moving to a higher
error state:  the higher the temperature, the greater the
likelihood of moving to a higher error state.  The
algorithm is analogous to the slow cooling of a metal,
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which allows the atoms to arrange themselves into a
crystal that is the minimum energy state (hence the name
“simulated annealing”).  We reduced the temperature at a
constant rate; other reduction schedules are possible [21].

An important issue is the definition of the error
function.  One possibility is to define the error as the
sum-of-squared distances between the range data points and
the nearest point on the surface of the model.  With this
approach, points with large distances dominate the total
error score.  This has the problem that outliers (points
which do not belong to the model) greatly affect the
resulting fit.  A error function is needed in which outliers
do not affect the fit.  This error function is defined as

errorscore = −G ri
i =1

# pts

∑

where ri = distance from the ith point to the model and G is
a constant.  As ri approaches infinity, the contribution of
the point to the error score goes to zero.  As r approaches
zero, the contribution of the point to the error score would
approach negative infinity; however, we limit the
minimum score to -G/DMIN, where DMIN is the estimated
uncertainty in position of our data points (1 cm).  

This error function has the same form as the potential
energy resulting from a gravitational or electrostatic force.
In fact, each point may be considered to exert a force
proportional to 1/r on the model, where r is the distance to
the model surface.  Very close points exert a large force;
and very distant points exert a negligible force.  Thus,
outliers have a negligible effect on the overall fit.

Determining the distance from a range point to the
closest visible point on the primitive object model is a
three step process.  First of all, a transformation is made
from the camera-centered world coordinates to a coordinate
system centered at the model’s center and aligned along its
major axis.  This transformation simplifies the distance
calculations dramatically.  Secondly, the visible surfaces
of the model are calculated using translation and
orientation information from the current state vector.
Finally, the location of the point, the model dimensions,
and a record of the visible faces of the model are used to
calculate the distance from the point to the closest visible
surface.  The simplicity of these operations is also due in
part to the use of primitive  objects with known
dimensions.

In experimentation to date, we have found that the
model fitting algorithm converges to a minimum in
several thousand iterations, which takes about 10-15
seconds on a Silicon Graphics Indigo2 workstation (this
also includes the time required to draw 3-D graphics).  In
some cases, this is the true solution (global minimum),
but in other cases it is an incorrect solution (local

minimum).  In the latter cases, the user must intervene
(see next section) in order to reach the correct solution.

C.  User Interaction Techniques

We have developed software to allow the user to
visualize and interactively fit 3-D graphical models on the
Silicon Graphics workstation.  The software displays
range data points and geometric primitives (spheres,
cones, cylinders, and parallelepipeds) as overlays on top of
background images from the stereo cameras.  These
objects can be displayed in normal 2-D mode or in 3-D
mode, using stereo viewing glasses.  For an input device,
the operator can use the usual 2-D mouse, or a 6 degree-
of-freedom (DOF) mouse.  

The user first selects a geometric primitive (model) to
fit to the data points.  The user can manipulate the size
and shape of the model with a wire-frame “handle-box”
surrounding the model, or by entering data into a text box.   
At this point, the user can manipulate the model in
manual mode using the 2-D or 6 DOF mouse.

When the simulated annealing algorithm is running,
the model is continuously drawn in the latest estimated
position, the effect of which is that the model is drawn as
an animated figure which initially jitters around and then
jockeys into final position.  This animation allows the
user to immediately see whether the fitting algorithm is
converging to the correct solution, and if not, to take
action to correct the problem.  In the meantime, the
simulated annealing algorithm automatically reduces the
temperature to a fixed percentage of the previous value.
The temperature is defined to be a number between zero
and 100.  After the temperature has fallen to a sufficiently
low level, the model stabilizes around its final position.

There are two techniques with which the user can
interact with the system to provide guidance and
constraints.  These techniques, called traded control and
shared control, draw again upon the paradigm of
supervisory control [1].  In traded control, the user and the
system each take turns controlling the pose of the model.
We have found this to be particularly useful when the
model fitting algorithm gets stuck in a local minimum.
The user can immediately see that the model (shown as a
graphical overlay on the image of the scene) has settled
into an incorrect pose.  By moving the mouse, the
operator takes control of the model from the system, and
can move it towards the correct pose.  Releasing the
mouse allows the system resume the model fitting
algorithm.  A small movement toward the correct pose is
often enough to push the model out of the local minimum
and allow it to automatically find the correct pose.

In shared control, the user controls some of the
degrees of freedom, while simultaneously the system
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controls the other degrees of freedom.  The operator can
choose any of three different modes of shared control, as
shown in Table 1.

Table  1   Techniques  in  shared  contro l .

Mode Constraints

Operator designates a
2-D point in the image

Object center must lie along ray
emanating from the current viewpoint out
in the direction of the selected image point

Operator designates a
3-D point

Object center must be located at the
designated point

Operator controls a set
of orthogonal axes

Object orientation must match the
specified axes

IV. Implementation

This section describes the implementation of the
model fitting system and informal evaluations performed
with volunteer operators.  The system was developed
using the Silicon Graphics software package called “Open
Inventor”, which provides high level C++ class libraries
to create, display, and manipulate 3-D models.  

Figure  3   User  in ter face  for  model  f i t t ing
a p p l i c a t i o n ,  s h o w i n g  c y l i n d e r  m o d e l  i n
i n i t i a l  p o s e .

Figure  4   Final  pose  for  a  sample  f i t t ing  run.

The application displays the 3-D data points as small
red boxes overlaid on the background image (the “left”
image of the stereo set).  The user selects a geometric
primitive to fit to the data points, which is shown as a
translucent model (Figure 3).  

The user can manipulate the model in manual mode
using the 2-D or 6 DOF mouse, or start the automatic
model fitting (simulated annealing) algorithm.  In either
mode, the pose of the model is continuously displayed in
the text fields on the right side of the window.  Also
displayed is the current “error” score, which represents the
total distance of the 3-D points to the model.  The color
of the model changes from shades of red to green as the
error decreases.

When the simulated annealing algorithm is running,
it gradually reduces the temperature at each iteration.  The
temperature is graphically shown as a vertical bar
immediately to the right of the image.  The user can set
the temperature manually by simply moving the bar up or
down.  We have found this to be useful when the model
has appeared to reach the correct pose.  In this case, we
reduce the temperature to zero immediately to avoid any
chance of the model escaping the correct solution.  Figure
4 shows the model in its final pose.

An important part of this project was to quantify the
benefits of the interactive object modeling techniques in
terms of task completion time and model accuracy.  We
performed two sets of evaluations using human subjects:
a preliminary, informal set of experiments using 4
subjects; later, a formal set of experiments with 14 human
subjects.  In each evaluation, the subjects were asked to fit
models to range data using both interactive and purely
manual fitting.

To begin with, subjects were trained in the use of the
6DOF mouse.  Following the training, the subjects were
asked to fit models to data in a variety of scenes.  For the
informal evaluation, there were 16 scenes (8 with real data
and 8 with synthetic data).  The formal evaluations used
only 8 scenes (all synthetic data).  Since the subjects were
instructed to favor accuracy over task time, each trial was
completed when the subject deemed that the closest fit had
been attained.

The cumulative average results are shown in Table 2.
In this table, pose error was measured from only the
synthetic scenes (since we did not have ground truth pose
data for the real scenes).  Pose orientation error was
determined by measuring the angular deviation of an axis
of the model from the known ground truth axis direction.
From the results, it is evident that interactive fitting was
far superior to manual fitting in task time and slightly
better in accuracy.

We also compared the interactive fitting mode to
purely automatic mode during our preliminary evaluation.
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Four fully automated (i.e. , no user interaction) runs from
the default starting position were done for each of the 8
synthetic scenes.  The system produced a correct result
(almost identical to interactive runs for the same scenes)
on only 16 out of 32 of these runs, or only 50% of the
time.  In other words, half the time it was unable to
escape local minima.

Table  2:   Summary  of  formal  eva luat ion  resul t s .

Manual Interactive
Task time (sec) 192.75 40.68
Scaled error score (min 1000.0) 1101.48 1000.62
Orientation error (deg) 1.886 .758

V. Conclusions

We have developed an interactive system for fitting
models to range data and have demonstrated its
effectiveness (in terms of task time and accuracy) in
preliminary evaluations with human operators.  Unlike
purely manual or purely autonomous systems, our
interactive system combines the best attributes of each to
create a system that has high operator productivity as well
as high flexibility and robustness.  Similar to supervisory
control, we integrate human intelligence and machine
intelligence to create a more powerful system that uses the
best elements from each component.  The human provides
high level reasoning and overall guidance; the computer
provides quantitative analysis and repeatable operation.   

Our system can use extremely sparse range data
(about 50 - 100 points per object), can tolerate occlusions,
and work in cluttered scenes.  Through a combination of
traded and shared control, the operator supervises the
creation of models of objects in the scene.  The system
uses an optimization technique called simulated annealing
for fitting primitive 3-D object models to the range data.
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