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I. ABSTRACT 

Recognizing and locating objects is crucial to robotic 
operations in unstructured environments.  To satisfy this 
need, we have developed an interactive system for creating 
object models from range data based on simulated 
annealing and supervisory controla.  This interactive 
modeling system maximizes the advantages of both manual 
and autonomous methods while minimizing their 
weaknesses.  Therefore, it should outperform purely 
autonomous or manual techniques.  We have designed and 
executed experiments for the purpose of evaluating the 
performance of our application as compared to an identical 
but purely manually driven application.  These experiments 
confirmed the following hypotheses:   

 
• Interactive modeling should outperform purely manual 

modeling in total task time and fitting accuracy. 
• Operator effort decreases significantly when utilizing 

interactive modeling. 
• User expertise does not have a significant effect on 

interactive modeling task time. 
• Minimal human interaction will increase performance 

on “easy” scenes. 
 
Using 14 subjects and 8 synthetically generated scenes, we 
recorded the task times and pose data and, from them, used 
analysis of variance (ANOVA) to test a set of hypotheses. 

                                                                 
a This project has been funded by the INEL University 
Research Consortium.  The INEL is managed by Lockheed 
Martin Idaho Technologies Company for the U.S. 
Department of Energy, Idaho Operations Office, under 
Contract No. DE-AC07-94ID13223 

II. INTRODUCTION 

The use of robots in hazardous applications such as 
radioactive facility dismantlement and remediation of buried 
waste has become a necessity due to the risk to humans in 
such environments.  Control schemes for robots in such an 
environment range from fully manual (i.e., human 
teleoperation) to fully automated (i.e., no human 
supervision or input).  Supervisory control measures exist 
between these two extremes and offer a promising 

alternative1.  Systems performing tasks under supervisory 
control enjoy the flexibility and reliability of human 
interaction combined with the speed and accuracy of 

computerized processes2. 
In unstructured environments such as waste dumps 

where the number, locations, and attributes of objects 
populating a scene are not known in advance, graphical 
site models are a necessary tool.  These models contain 3-D 
graphical representations of the objects in a scene and 
facilitate maneuvering in and manipulation of a scene by 
robots.  The creation of these scenes can be quite tedious, 
however.  Typically, physical measurement of the object 
locations in the scene is used in conjunction with a 
graphical user interface or CAD software to produce a site 
model.  These models suffer from many inaccuracies, 
particularly concerning the orientation of the object since 
this is difficult to measure accurately by hand.  Another 
obvious consideration is that humans should not take 
measurements in hazardous environments. 

Range data gathered from a stereo vision system, laser 
range finder, or other sensing devices provides a useful 
alternative to physical measurement in the creation of site 
models.  Models can be formed from this range data using a 
wide variety of techniques.  In the past, these techniques 
have been predominately manual or automated.  Manual 
techniques for site modeling often utilize a graphical user 
interface, with a human operator doing the model placement 
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and fine-tuning.  These methods are historically tedious 
and slow.  Automated techniques, which often employ 
image understanding algorithms and optimization routines, 
are a speedy alternative to manual techniques.  However, 
purely automated systems lack the reliability of purely 
manual systems.  Therefore, we have developed an 
interactive system for fitting object models to range data.  
An interactive system consists of both manual and 
automated components and utilizes their respective 
advantages.  In this paper, we briefly discuss the 
architecture of this system.  In particular, we address its 
three major components:  the stereo vision sensor, the 
automated model-fitting algorithm, and the user interaction 
techniques we have employed. 

In addition, we describe the design, execution, and 
results of experiments that evaluated the performance of 
our interactive modeling system.  The experiments utilized 
human subjects.  These subjects were trained to pilot the 
application and then evaluated in their use of the 
interactive model fitting application compared to their use 
of an identical but purely manual modeling system.  
Performance was measured in savings of total task time and 
operator effort as well as accuracy (pose and closeness of 
fit to the range data). 

III. BACKGROUND 

In the past, the creation of site models has typically 
been a primarily manual or automated task.  Predominately 
manual methods rely on a human operator as opposed to a 
computer for creating and placing object models 
corresponding to objects observed in a scene.  One such 
method used a gripper attached to robotic arm to seize and 
place objects for further inspection, analysis, and eventual 

addition to a model3.  In Sandia’s Graphical Programming 
System, the location of an object was determined by 
manually operating a robot to make it touch the object with 

a probe4.  These and other manual site and object modeling 
methods give accurate results, but are often tedious and 
slow. 

Primarily automatic systems  are designed to overcome 
the lack of speed exhibited by manual systems .  The 
computer vision field offers several techniques for 
automatically recognizing and creating models from range 
data.  We wish to distinguish between two of these 

techniques:  systems that construct a surface map5 or 

occupancy map6 of a scene; and those (like ours) which fit 
geometric models to discrete objects in the scene.  In the 
latter class of techniques, systems have been developed to 

fit superquadric volumetric primitives7, generalized 

cylinders8, and parametric geons9, to range data.  Hebert, et 
al. used the operator to select an initial region of interest in 

the image, then automatically fit a cylinder to the surface 

data10. 
In other systems, specific object models have been fit 

to range data.  For example, Grimson, et al. matched a model 

derived from MRI data to laser range data11.  Besl and 
McKay registered two 3-D shapes using the iterative 

closest point algorithm12.  Many techniques use an 
iterative algorithm to find a solution, either based on least 
squares or Kalman filtering.  One such system used these 

methods for vehicle docking13. 
Researchers contest that fully automated systems for 

object recognition and modeling are incapable of matching 
the human’s ability to employ background knowledge, 
common sense, and reasoning.  For instance, automated 
techniques have difficulty modeling occluded objects 
correctly.  Occlusion is a common trait of unstructured 
environments such as a drum that is half-buried in a landfill. 

Recently, there has been a movement toward 
interactive applications in robotics.  Interactive modeling 
applications combine automated object recognition 
techniques with human supervision and incorporation of a 
priori knowledge in an effort to overcome obstacles like 
occlusions, sparse and noisy data, and segmentation of 
objects from the background.  DARPA’s ongoing RADIUS 
project is an example of how interactive systems have been 
used successfully to build site models in the domain of 
overhead image interpretation.  In one such system, much 
work has gone toward automating portions of the 
interpretation process using image understanding 

techniques14.  Interactive techniques have been 
successfully developed to extract building and road 

models 15.  For example, an image analyst can provide an 
initial approximation for a building outline and let the vision 
system perform local optimization of the variables to fit the 

data16.  Although promising, these methods have only 
been applied to the overhead image interpretation domain 
(primarily 2-D).  They must be modified to apply them to the 
robotic domain (primarily 3-D) and other environments in 
which viewpoints are not as  constrained. 

The following section describes our interactive site 
modeling system.  Our system utilizes automated fitting of 
object models in conjunction with human supervisory 
control to create site models quickly and accurately and to 
overcome the problems presented by occlusion, 
segmentation, and sparseness of range data. 

IV. SYSTEM DESCRIPTION 

Our system consists of three major components: 
 
1) A stereo vision sensor as a source of range data 

points. 
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2) A model fitting algorithm that uses an optimization 
routine known as simulated annealing. 

3) An interactive (supervisory) technique known as 
traded control. 

A. Stereo Vision Sensor 

We have developed a stereo vision sensor for 
obtaining range data.  Stereo vision is a technique that 
matches points between images from multiple cameras and 
uses triangulation to compute range.  Stereo vision 
typically produces sparse range data because of the 
difficulty in matching points correctly.  We chose stereo 
because: 

 
1) It is a more challenging sensor.  If our techniques 

work well with stereo, it is highly probable that 
they will work with active sensors. 

2) Stereo has potential advantages of cost, size, and 
mechanical reliability over active sensors.   

 
However, our system was designed to use any source 

of range data.  In fact, it has already been tested with data 
from a structured light sensor. 

The stereo vision system detects “interesting” points 
(often in areas of high contrast) in the left and right images 
and matches them using a cross-correlation technique.  
Each candidate match determines a point in 3-D.  Figure 1 
shows the range points as cross-hairs overlaid on the left 
image. 

 

 

Figure 1  Range data points (crosshairs) from the stereo vision 
sensor. 

We have tested the system on 13 real scenes and 
numerous synthetic scenes.  The result was an average of 
88 3-D points per scene.  Then, we manually examined 
these 3-D points and found an average of 4 faulty matches 
remaining per scene (i.e., points with a large range error). 

B. Model Fitting Algorithm 

The next step was to develop an algorithm to fit 
geometric primitive models to range data.  The algorithm 
iteratively adjusts a state vector representing the 
parameters of the model in order to minimize the error 
distances between the range data points and the nearest 
point on the visible surface of the model.  Currently, the 
state vector represents only the location and orientation (6 
degrees of freedom, or DOF) of the model, but we are in the 
process of extending it to include parameters describing 
size and shape.  The algorithm uses the “downhill simplex” 

method to search for the minimum17.  With this method, 
however, there is a strong possibility that the algorithm will 
become stuck in a local minimum that is far from the true 
solution. 

To avoid this, a simulated annealing algorithm18 was 
built on top of the downhill simplex method.  Simulated 
annealing allows the state vector to occasionally move to a 
point with higher (worse) error and continue its search for 
the global minimum.  The probability of moving to a higher 
error state is dictated by a “temperature” parameter:  a 
higher temperature means a higher probability of moving to 
a point of greater error.  The algorithm is analogous to the 
slow cooling of a metal, which allows the atoms to arrange 
themselves into a crystal that is the minimum energy state 
(hence the name “simulated annealing”).  Although we 
reduced the temperature at a constant rate, other reduction 

schedules are possible and are problem dependent19. 
Another important issue was the definition of the error 

function.  One possibility was to define the error as the 
sum-of-squared distances between the range data points 
and the nearest point on the surface of the model.  Using 
this approach, points with large distances would dominate 
the total error score.  This means that outliers (points that 
do not belong to the model) would greatly affect the 
resulting fit.  Therefore, an error function was needed in 
which outliers do not affect the fit.  This error function was 
defined as 

errorscore = − G ri
i =1

# pts

∑  

where ri = distance from the ith point to the model and G is  a 
constant.  As ri approaches infinity, the contribution of the 
point to the error score goes to zero.  As r approaches zero, 
the contribution of the point to the error score would 
approach negative infinity; however, we limit the minimum 
score to -G/DMIN, where DMIN is the estimated uncertainty in 
position of our data points (1 cm).  This error function has 
the same form as the potential energy resulting from a 
gravitational or electrostatic force.  In fact, each point may 
be considered to exert a force proportional to 1/r2 on the 
model, where r is the distance to the model surface.  Very 
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close points exert a large force; and very distant points 
exert a negligible force.  Thus, outliers have a negligible 
effect on the overall fit. 

In preliminary experimentation, we have found that the 
model fitting algorithm converges to a minimum in several 
thousand iterations, which takes about 10-15 seconds on a 
Silicon Graphics Indigo2 workstation (this also includes the 
time required to draw 3-D graphics).  In some cases, the 
true solution or global minimum error was attained; but in 
all other cases, an incorrect solution or local minimum was 
located.  In the latter cases, user intervention (see next 
section) was necessary to reach the correct solution. 

C. User Interaction Techniques 

To incorporate user interaction and visualization into 
our site modeling system, we have developed a 3-D 
graphical user interface on the Silicon Graphics 
workstation.  The software displays range data points 
(colored 3-D cubes) and geometric primitives (spheres, 
cones, cylinders, and parallelepipeds) as overlays on top of 
background images from the stereo cameras.  These objects 
can be displayed in normal 2-D mode or in 3-D mode, using 
stereo viewing glasses.  For an input device, the operator 
can use the usual 2-D mouse, or a 6 degree-of-freedom 
(6DOF) device. 

The user first selects a model from a database of 
geometric primitives to fit to the data points (see Figure 2).  
The user can then manipulate the size and shape of the 
model by entering data into a text box.  At this point, the 
user can manipulate the model using the mouse or 6DOF 
device. 

 

 

Figure 2 :  Initial model position 

When the simulated annealing algorithm is running, 
the model is continuously drawn in the latest estimated 
position.  During the course of the fitting procedure, the 
model initially jitters around and then jockeys into final 
position.  This animation allows the user to immediately see 
whether the fitting algorithm is converging to the correct 
solution and, if not, allows the user to take action to correct 

the problem.  In the meantime, the simulated annealing 
algorithm automatically reduces the temperature (scaled 
between 0 and 100) to a fixed percentage of the previous 
value.  After the temperature has fallen to a sufficiently low 
level, the model stabilizes around its final position.  When 
the temperature reaches 0, the movement stops and the 
model becomes fixed in its final position (see Figure 3). 

 

 

Figure 3 : Final position after fitting 

Two metrics are available to the user to gauge the error 
of the fit of the model to the data points.  First of all, the 
error is continuously displayed as a numerical score.  
Additionally, the color of the model is changed from 
shades of red to shades of green as the error reduces. 

The technique with which the user can interact with 
the system to provide guidance is called traded control.  
Traded control draws again upon the paradigm of 

supervisory control1.  In traded control, the user and the 
system each take turns controlling the pose of the model. 
This measure has been particularly useful when the model 
fitting algorithm becomes stuck in a local minimum.  Thanks 
to the continuous rendering of the model, the user can 
immediately see that this model (shown as a graphical 
overlay on the image of the scene) has settled into an 
incorrect pose.  By jogging the 6DOF device, the operator 
can take control of the model from the system and move it 
towards the correct pose.  Releasing the 6DOF device 
allows the system to resume simulated annealing.  We have 
found that minimal encouragement in the direction of the 
global minimum was required to push the model out of the 
local minimum and allow it to automatically find the correct 
pose.  Time spent manipulating the model manually is 
referred to as “User Time” in the description of experiments 
that follows. 

V. EXPERIMENTS AND RESULTS 

We have designed and executed a set of experiments 
whose purpose was to evaluate the performance of our 
interactive modeling system compared to a similar, purely 
manual modeling system.  For a fair comparison under 
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experimental conditions, our manual modeling scheme was 
simply interactive modeling with the automated portion 
turned off (as was done by Hsieh on the RADIUS 

project20).  In our application, manual modeling was 
accomplished via manipulation of the model with only the 
6DOF device.  Similar experiments, designed to realize the 
effect of an operator aid on performance, have been done 

for a machine-vision-based teleoperation system21. 

A. Hypotheses and Experimental Design 

Prior to designing our experimental evaluations, we set 
forth the following hypotheses concerning the performance 
of our interactive modeling application: 

 
1) Interactive modeling should outperform purely manual 

modeling in total task time and fitting accuracy (where 
fitting accuracy includes both pose error and error in 
fitting to the range data). 

2) Operator effort (measured in terms of user time) 
decreases significantly when utilizing interactive 
modeling. 

3) Interactive modeling makes up for a lack of expertise.  
Specifically, subjects who differ greatly in mean task 
time using purely manual modeling will be statistically 
indistinguishable on the basis of task time using 
interactive modeling. 

4) Initial placement of the primitive object model by the 
human supervisor will improve performance when 
interactively modeling a “difficult” scene, while 
minimal human interaction (no initial placement) will 
increase performance on “easy” scenes. 
 

These hypotheses were based on the results of informal 
evaluations done previously. 

The above hypotheses dictated which independent 
variables would be manipulated in our experiments.  The 
first and second hypotheses required us to split the trials 
between manual and interactive modeling schemes.  
Comparison of manual trials to interactive trials would then 
highlight the difference in performance should our 
hypotheses hold.  As a result, 8 synthetically generated 
scenes were each fit once interactively and once manually 
by each subject. 

The third hypothesis dictated a division between 
novice and expert users.  We rated expertise solely on the 
ability to fit object models to range data using purely 
manual modeling.  For an even number of subjects, the 
division between “expert” status and “novice” was found 
by simply taking the mean task time for purely manual 
modeling for each subject and assigning “expert” status to 
the top 50%. 

The fourth and final hypothesis required the 
introduction of two additional independent variables.  One 
of these was “scene difficulty” which was assessed as the 
average time it takes to complete the task over all subjects.  
Again, the toughest 50% would be termed “difficult” while 
the remainder garnered an “easy” designation.  A bimodal 
distribution of scene difficulty was ensured by varying the 
number, types, and orientations of objects in a scene as 
well as the density of range points on and around the 
objects.   

The other variable was the interactive fitting strategy.  
From the informal evaluations, we were led to believe that 
initial placement of the graphical model in the region of the 
object of interest by the human supervisor gave faster task 
times.  Additionally, allowing the automated portion of the 
interactive modeling application to do most of the work in 
“easy” scenes also seemed to give speedier task times in 
those situations.  Thus, dividing interactive fitting 
strategies amongst pairs of similar scenes facilitated a 
direct comparison of the two for both “easy” and “difficult” 
scenes.  Table 1 summarizes the independent experimental 
variables. 
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Table 1 : Independent experimental variables 

Variable Name Possible Values 
Modeling Method manual, interactive 
User Expertise expert, novice 
Scene Difficulty easy, difficult  
Fitting Strategy initial placement, no initial placement 

 

Table 2 : Schedule of scenes encountered during experiments 

Scene Modeling 
Method 

Fitting Strategy 

syn1 manual  
syn3 interactive initial placement 
syn9 manual  
syn10 interactive no initial placement 
syn4 manual  
syn2 interactive no initial placement 
syn11 manual  
syn12 interactive initial placement 
syn2 manual  
syn12 interactive no initial placement 
syn10 manual  
syn1 interactive initial placement 
syn3 manual  
syn9 interactive initial placement 
syn11 manual  
syn4 interactive no initial placement 

 

B. Execution of Experiments 

Several human subjects were necessary for the 
successful completion of these experimental evaluations.  
Subjects were brought in on a voluntary basis.  In all, 14 
subjects, all of which were either undergraduate or 
graduate students, participated in the experiment.  The 
sampling of students was fairly representative of the 
School of Mines population:  3 were females; most were 
right-handed (although the 6DOF device favors neither); all 
were at least fairly computer literate, most exceptionally so; 
all had normal (sometimes corrected) vision and depth 
perception; finally, most were in their early twenties, 
although some were in their late twenties or older. 

 

 
 

 

Figure 4 :  Scenes (left to right from top) syn1, syn11, syn2, 
and syn10 (easy); syn3, syn9, syn4, and syn12 (difficult). 

 
Each subject was briefed on the scientific and 

industrial significance of the system and then was trained 
for a period of 10 to 15 minutes in the use of the 6DOF 
device:  a Logitech Magellan.  The training session covered 
the three translations (x, y, z), changes of orientation (roll, 
pitch, and yaw) and allowed the subjects to practice fitting 
models to separate training data using manual modeling, 
interactive modeling with initial placement, and interactive 
modeling without initial placement. 

Each subject was then asked to complete the 16 trials.  
The trials took anywhere from 30 to 50 minutes giving 
approximately 55 minutes to an hour on average to 
complete an experiment with a particular subject.  The 
scenes were encountered in a somewhat random order, but 
were arranged so that alternating trials using manual and 
then interactive modeling occurred (see Table 2). 

Completion of a trial occurred when the user and 
evaluator agreed that the fit to the data was the closest that 
could be found.  The computer then automatically logged 
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the pose data and the overall and user task times. User time 
during interactive trials was recorded by the computer 
every time the 6DOF device was touched and continued 
until control was returned to the automated modeling 
routine. 

Several factors were kept constant during the 
experiments in an effort to keep from skewing our results.  
First of all, all subjects used the same workstation with an 
equal number of applications running simultaneously.  In 
addition, room lighting was made approximately the same. 

The traits of the interactive modeling routine, however, 
necessitated an additional consideration.  In particular, the 
annealing temperature needed to be lowered to zero before 
completing the trial to ensure that the model would settle 
into a minimum error state.  This also ensured that every 
subject had an equal opportunity to fit the data as closely 
as possible. 

C. Results 

To determine the validity of our results relative to our 
original hypotheses, we utilized a statistical comparison 

called analysis of variance (ANOVA)22.  Simply put, the 
purpose of ANOVA is to calculate the confidence with 
which a particular independent experimental variable is said 
to affect a dependent variable or desired result.  The 
confidence is found by splitting the experimental trials 
according to the value of one independent experimental 
variable and then doing a statistical comparison.  For 
example, the dependent variable “User Time” was shown to 
have been directly affected by the choice of  “Modeling 
Method” (either manual or interactive).  Table 3 summarizes 
the results of ANOVA applied to data gathered from 224 
total trials that were grouped according to the specified 
independent experimental variables.  The results were 
tested to the 99% confidence level. 

Those results which passed the ANOVA validation are 
summarized in Figure 5 and Tables 4 and 5.  From this data, 
we confirmed the following hypotheses: 

 
1) Interactive modeling should outperform purely 

manual modeling in total task time and fitting 
accuracy. 

2) Operator effort decreases significantly when 
utilizing interactive modeling. 

3) User expertise does not have a significant effect 
on interactive modeling task time. 

4) Minimal human interaction will increase 
performance on “easy” scenes. 

 

Table 3 : Summary of ANOVA results 

Dependent Variable Independent 
Variable 

Independen
t Affects 
Dependent? 

Total Task Time  Modeling Method Yes 
User Time  Modeling Method Yes 
Translation Error  Modeling Method No 
Orientation Error  Modeling Method Yes 
Error Score  Modeling Method Yes 
Task Time (easy 

interactive scenes)  
User Expertise No 

Task Time (difficult int. 
scenes) 

User Expertise No 

Task Time (easy 
interactive scenes)  

Fitting Strategy Yes 

Task Time (difficult int. 
scenes) 

Fitting Strategy No 
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Figure 5 : Comparison of mean task times for each scene. 

Also, note that the difference between expert and 
novice performance for trials where interactive modeling 
was used does not appear in the results.  As shown in the 
ANOVA table, the confidence that the independent 
variable “User Expertise” affected the total task time was 
very low.  Therefore, Hypothesis 3 (that “User Expertise” 
does not significantly affect task time when using 
interactive modeling) is supported as well.  The effect of 
interactive versus manual fitting on translation error and 
the performance of  initial placement versus no initial 
placement for difficult scenes failed this criterion, too.  This 
suggests that these portions of the original hypotheses are 
neither proven nor disproven.   
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Table 4 : Mean experimental results for all scenes 

 Manual Interactiv
e 

Task time (sec) 192.75 40.68 
Scaled error score (min 
1000.0) 

1101.48 1000.62 

Orientation error (deg)  1.886 .758 
 

Table 5 : Interactive task times for "easy" scenes using various 
fitting strategies.  

Fitting Strategy Mean Task Time 
(seconds) 

Initial placement 50.75 
No init. placement 31.14 

 

VI. CONCLUSIONS AND FUTURE WORK 

We have developed an interactive system for creating 
site models using range data.  This system consists of 
three major components: a stereo vision sensor, an 
automated iterative optimization algorithm known as 
simulated annealing, and a supervisory control measure 
allowing for human interaction.  Through formal 
experimentation and evaluation, we have shown this 
interactive system outperforms an identical but primarily 
manually driven application in speed, accuracy, and 
reliability.  Specifically, the following hypotheses were 
confirmed: 

 
1) Interactive modeling should outperform purely 

manual modeling in total task time and fitting 
accuracy. 

2) Operator effort decreases significantly when 
utilizing interactive modeling. 

3) User expertise does not have a significant effect 
on interactive modeling task time. 

4) Minimal human interaction will increase 
performance on “easy” scenes. 

  
We have also demonstrated, in general, that such a 

system can provide a high-performance solution to the 
crucial site-modeling problem facing engineers whose 
robots work in unstructured environments. 

In the future, we would like to integrate this system 
within a robotic test environment so that we can work to 
develop efficient representations of the site model that are 
easily understood by robotic systems.  In addition, we 
intend to add scaling and other “morphing” attributes to 
our degrees of freedom to increase the flexibility of our 
application by offering a wider variety of available 
primitives to fit to the scenes. 
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