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Abstract 
 
This paper describes an algorithm to estimate the position 

and orientation (pose) of artificial knee implants from X-ray 
fluoroscopy images using computer vision.  The resulting 
information is used to determine the kinematics of bone motion in 
implanted knees.  This determination can be used to support the 
development of improved prosthetic knee implants, which 
currently have a limited life span due to premature wear of the 
polyethylene material at the joint surface.  Our algorithm 
determines the full 6 degree of freedom translation and rotation 
of knee components.  This is necessary for artificial knees which 
have shown significant rotation out of the sagittal plane, in 
particular internal/external rotations.  By creating a library of 
images of components at known orientation and performing a 
template matching technique, the 3-D pose of the femoral and 
tibial components are determined.  The entire process, when used 
at certain knee angles, gives a representation of the positions in 
contact during normal knee motion.   

 

1.  Introduction 
 
More than 100 types of arthritis now afflict millions of 

Americans, often resulting in progressive joint destruction 
in which the articular cartilage (joint cushion) is worn 
away causing friction between the aburnated (uncovered) 
bone ends.  This painful and crippling condition 
frequently requires total joint replacement using implants 
with polyethylene inserts (Figure 1). 

Although artificial knee joints are expected to last 10 
to 15 years, research indicates that most implants last an 
average of just 5.6 years [1].  With population longevity 
rising, many patients will require additional surgery to 
replace dysfunctional prosthetic joints to achieve two 

decades or more of use.  Currently, more than 400,000 
Americans receive lower extremity implants per year, 
accounting for over $1.5 billion annually in health care 
costs. 

 
Figure 1  Components of knee implant, with 
polyethylene insert (white material).  

A key problem with knee (and hip) implants is the 
premature wearing of the polyethylene inserts.  Repeated 
frictional contact generates loose particles which lead to 
inflammation of the joint, osteolysis, and eventual implant 
loosening.  It is hypothesized that the kinematics of 
artificial knees are different than in normal knees, and may 
involve excessive sliding and rotational motions which 
lead to high shear stresses.  If the kinematics of artificial 
knee joints can be measured “in vivo”, this information 
could be used to help design implants that better replicate 
normal knee kinematics. 

X-ray fluoroscopy is a useful tool to analyze knees 
“in vivo”.  X-rays are emitted from a tube, pass through 
the knee and strike a fluorescent screen where the images 
are intensified and recorded via video tape [2].  The result 
is a perspective projections of the knee, recorded as a 
continuous series of images (Figure 2(a)). 
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Our problem was to analyze the fluoroscopy images 
to determine the relative pose (position and orientation) of 
the two implant components (tibial and femoral) with 
respect to each other.  This paper describes a technique 
we developed to do this, based on template matching.  
CAD models of the components were developed and a 
library of silhouette, or template images was created.  
These silhouette images were matched against the 
extracted silhouettes from the fluoroscopy images.  The 
pose of each component, as well as their relative pose, 
was then derived.  Figure 2(b)  shows an image of the 
CAD models overlaid on top of the original X-ray 
fluoroscopy image.  Our technique has been used to 
analyze the kinematics of several different knee types and 
to quantify the effect of several kinematic phenomena, 
including sliding and edge lift-off [3-6]. 

   
Figure 2. (a) Fluoroscopy image of artificial knee. 
(b) Image with CAD model overlay. 

Section 2 describes previous related work in this area.  
Section 3 describes our developed technique in detail.  
Section 4 presents the results of tests on synthetic and 
real data to measure the accuracy of the method, and 
Section 5 provides conclusions. 

 

2.  Previous work 
 
Previous work with fluoroscopy images has primarily 

concentrated on measuring the rotation and translation of 
components within the plane of the image.  Stiehl and 
Komistek et. al. [7] analyzed still photographs of the 
fluoroscopic video to measure rotations and translations 
of the knee joint members.  Their work was limited to the 
in-plane rotations and translations of the implant 
components.  However, the actual motion of the 
components also includes rotations and translations out 
of the plane of the image.  

In computer vision, the problem of estimating the 
pose of a known rigid object from 2-D images has been 
widely studied.  In our application, the primary feature that 
can be extracted from the image is the extremal contour, or 
silhouette, of the object.  There have been a number of 
algorithms described in the literature that make use of the 
silhouette. 

Lowe [8] describes an iterative least-squares 
algorithm for aligning the projected extreme contours of 
the model with edges found in the image.  However, this 
technique assumes a polyhedral model; and would be 
difficult to apply to the knee implants, which have smooth, 
complex surfaces.  Kriegman and Ponce [9] used rational 
surface patches, implicit algebraic equations, and 
elimination theory to obtain analytic expressions for the 
projected contours.  However, this method is restricted to 
objects with only a few patches, and would be difficult to 
apply to knee components, which have highly complex 
surfaces.  Lavallee, et. al. [10] describe an algorithm which 
minimizes the 3-D distances between the rays 
(corresponding to the points on the contour) and the 
closest point on the surface of the object.  A 3-D distance 
map is pre-computed that stores the distance from any 
point in the neighborhood of the object to the closest 
point on the surface.  Lavallee developed an octree-spline 
technique to speed up the construction of the distance 
map, which otherwise would be prohibitively slow. 

Another, perhaps simpler, approach for pose 
estimation is to use a template matching technique.  If the 
complete silhouette of the object is visible, an algorithm 
can match the entire silhouette of the object with a pre-
computed template.  For two-dimensional applications 
such as character recognition, the object and the template 
differ only by a translation and a rotation within the plane 
of the image.  For three-dimensional applications such as 
automatic target recognition, the silhouette of the object 
changes shape as it rotates out of the image plane.  A 
solution to this problem is to pre-calculate and store a 
complete set of templates of the object, representing the 
object over a range of possible orientations. 

Banks and Hodge [11, 12] used this approach to 
measure the full six degree of freedom motion of knee 
prostheses by matching the projected silhouette contour 
of the prosthesis against a library of shapes representing 
the contour of the object over a range of possible 
orientations.  They measured the accuracy of the 
technique by comparing it to known translations and 
rotations of prostheses “in vitro”.  They report 0.74 
degrees of rotational accuracy (in all three axes), 0.2 mm of 
translational accuracy parallel to the image plane, and 5.0 
mm of translational accuracy perpendicular to the image 
plane.  Our process is similar to this  method.  The 
difference is that we use a direct template matching 
technique instead of Fourier descriptors.  We also utilize 
larger image libraries to increase the resolution of the 
angular measurements.   

 

3.  Process description 
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The central idea in our process is that we can 
determine the pose of the object (i.e., a knee implant 
component) from a single perspective image by measuring 
the size and shape of its projection in the image.  A simple 
technique for doing this is to match the silhouette of the 
object against a library of synthetic images of the object, 
each rendered at a known position and orientation.  The 
image with the best match would directly yield the 
position and orientation of the object in the input image.  
However, a library which encompasses all possible 
rotations and translations would be prohibitively large.  
As an example, suppose we want to determine an object’s 
pose within 5 mm and 2 degrees, and the allowable range 
is 50 mm translation along and 20 degrees rotation about 
each of the axes.  Dividing each range by the resolution  
results in a 116 or 1,771,561 entry library. 

To reduce the size of the required library, we use a 
simplified perspective model.  This model assumes that the 
shape of an object’s silhouette remains unchanged as the 
object is moved towards or away from the imaging sensor.  
This is not strictly true because the fluoroscope is a true 
perspective projection.  However, it is a reasonable 
approximation if this translational motion is small.  In the 
case of a subject flexing their knee in the sagittal plane, the 
translation out of the sagittal plane is in fact typically 
small. 

With the simplified perspective assumption, the 
shape of the object is independent of its distance from the 
imaging sensor (although its size is dependent on the 
distance).  Therefore, we generate a library of images of 
the object, all rendered at a constant (nominal) distance 
from the sensor.  When we process an input image, we 
correct for any difference in distance by scaling the size of 
the unknown object silhouette so that its area is equal to 
the area of the library silhouettes.   

The library of images consists of views of the object 
rendered at different out-of-plane rotations.  The object is 
rotated at 1° increments about the x axis, and at 1° 
increments about the y axis.  The object is always centered 
in the middle of the image.  The object is always rotated 
within the plane of the image so that its principal axis is 
aligned with the horizontal (x) axis.  Thus, the library is 
only two dimensional rather than 6 dimensional.  The 
range of rotation is ±15 degrees about the x axis, and ±20 
degrees about the y axis.  Figure 3 shows a portion of the 
library of images for a femoral component.  There are a 
total of 41 x 31 = 1271 images in each library. 

 
3.1  Creating the library 

 
The software modeling program AutoCADTM was 

used to create and render (in perspective projection) 3-D 
models of the implant components.  The settings for the 

perspective projection were determined by calibrating the 
fluoroscope using a pinhole camera model.  We then 
converted the rendered images into “canonical” form.  
This  was achieved by scaling the silhouette to a specified 
area (15000 pixels) and rotating the object so that its 
principal axis  was aligned with the x axis .  The amount of 
scaling and rotation was recorded, for later use by the 
pose estimation algorithm.   Finally, the library images 
were converted to binary form (one bit per pixel), and 
stacked to form a single multi-frame image.  The size of a 
library for a single component was about 7 Mbytes of 
data. 

 
Figure 3.  Portion of library for femoral implant 
component. 

 
3.2  Pose estimation 

 
Analysis of a fluoroscopy video begins with 

digitizing selected images from the sequence on a Silicon 
Graphics workstation.  These images are then stretched to 
equalize the horizontal and vertical scale.  The images are 
then input to the software that extracts the silhouette of 
the component and estimates its pose.  

The image processing algorithms described in this 
paper were implemented using a public domain image 
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processing software package called Khoros, from Khoral 
Research Inc..  Khoros is extensible and many new 
programs were developed and integrated during the 
course of this work.  Figure 4 shows the visual 
programming workspace that performs the silhouette 
extraction and pose estimation.  Each box, or “glyph,” 
within the workspace performs an operation on an image 
(or images), and the lines between the glyphs show the 
transfer of data.  

 
Figure 4  Data flow in Khoros workspace. 

The process begins by manually extracting a rough 
region of interest from the input fluoroscopy image, that 
contains the component of interest.  This is done to 
reduce the size of the image to be processed and speed up 
the computation time.  The reduced region of interest 
image is passed through a median filter to reduce the 
effect of noise. 

Next, the contour (or silhouette) of the implant 
component is extracted.  Currently, this is done manually, 
by having the user designate points around the boundary 
of the implant with the mouse.  We have found it difficult 
to reliably extract the contour automatically, due to the 
presence of nearby objects such as bone cement that are 
nearly the same intensity as the implant.  The resulting 
binary image is passed to a process called “Canonize”, 
which automatically converts the silhouette image to a 
canonical form.  As described earlier, the canonization 
process centers the silhouette, scales it to a constant area, 
and rotates it so that its principal axis is aligned with the 
horizontal (X) axis.  The resulting canonical image can be 
directly matched with the library. 

The next step finds the best match of the input 
canonical image with a library image.  This is done by 
systematically subtracting the input canonical image with 
each of the library images and generating a “score” for 
each, which is the number of unmatched pixels.  Figure 5 
shows the matching results for a particular image.  The 
black areas indicate the unmatched pixels.  The library 
image with the best match determines the two out-of-plane 
rotation angles of the object (θX, θY). 

We then find the remaining degrees of freedom of the 
object.  The  in-plane rotation angle θX is determined by 
taking the difference between the input image’s in-plane 
rotation angle and the library image’s in-plane rotation 
angle: 

θZ = θZ
input −θZ

library
 

The Z position of the object is determined by dividing 
scale of the fluoroscopy image by the scale of the library 
and multiplying that by the initial Z distance that the 
library image was rendered: 

Z = Z library ⋅ sinput slibrary( ) 

 
Figure 5.  Matching results.  

To determine the x, y position of the object, we 
compute the 2D image vector from the image centroid of 
the object to its projected origin.  We then calculate the 
(x,y) location of the object (in inches) relative to the 
sensor’s coordinate frame.  Finally, we correct the θX and 
θY rotation angles to take into account the effect of x,y 
translation on the apparent rotation.  The result is the full 
6 DOF pose of the object (X, Y, Z, θX, θY, θZ) relative to 
the sensor frame. 

As a check, the CAD model of the implant is projected 
onto the original X-ray image, using the derived pose data 
and the known model of the imaging system.  The model 
should fit the actual image silhouette closely.  Figure 2(b) 
shows an example of the CAD models for the femoral and 
tibial components overlaid on the original image. 
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4.  Experiments 
 
To check the accuracy of the pose estimation 

process, we performed two experiments.  For the first 
experiment, we created a set of synthetic images of the 
implant components, rendered at pre-determined poses.  
Three different component models were used:  one tibial 
implant and two femoral implants.  Each component was 
rendered in 8 different poses (Table 1) for a total of 24 test 
images. 

Table 1  Poses used for synthetic images.  
Pose θX θY  θZ X Y Z 

1 0 0 -60° 0 0 0 
2 8° 0 0 0 0 0 
3 0 8° 0 0 0 0 
4 8° 5° -60° 0 0 0 
5 0 0 0 1 in 0 0 
6 0 0 0 0 1 in 0 
7 0 0 0 0 0 1 in 
8 0 0 0 1 in 1 in 1 in 

The root mean squared (RMS) pose errors of the 
components are shown in Table 2, and agree 
approximately with the results reported by Banks and 
Hodge.  Note that errors are largest for out-of-plane 
rotations and out-of-plane translations. 

Table 2  RMS pose error, synthetic images.  
 Femoral1 Femoral2 Tibial  

In-Plane, Rotational 0.14° 0.22° 0.28° 
Out-of-Plane, Rotational 1.50° 1.24° 1.31° 
In-Plane, Translational 0.013 in 0.018 in 0.013 in 

Out-of-Plane, 
Translational 

0.088 in  0.054 in  0.036 in 

In the next experiment, we mounted the femoral and 
tibial components on rotational platforms and took 
fluoroscopy images of them at known orientations.  Figure 
6 shows the experimental setup.  Although the rotational 
platforms can be rotated very precisely, we did not know 
the precise absolute pose of the components relative to 
the sensor, due to uncertainties in mounting and initial 
alignment.  We therefore measured only the relative pose 
between the two components.    

 
Figure 6  Apparatus for pose tests.  

Our apparatus allowed us to rotate the femoral 
component relative to the tibial component about the 
horizontal axis.  This angle of rotation is called the “lift-
off” angle and is of great interest in the orthopedics 
community.  A non-zero lift-off angle indicates that the 
weight of the femur is being borne by only one of the two 
condyles (the two curved runners on each side of the 
femoral implant component).  If such a situation occurred, 
it could lead to increased wear on that side and eventual 
implant failure.  Therefore, a key goal of our tests was to 
determine how accurately we could measure lift-off angle. 

Our apparatus also allowed us to rotate the tibial 
component about the horizontal (X) and vertical (Y) axes.  
The femoral component was fixed with respect to the tibia 
(except for the single degree of freedom corresponding to 
the lift-off angle) and thus was rotated as well.  The 
complete set of test poses are shown in Table 3 (all angles 
are expressed in degrees). 

Table 3  Test poses, real images.  
Case θx θy Lift-

off 
angle 

 Case θx θy Lift-
off 

angle 

1 8 -5 -5  7 12 3 -6 
2 8 -5 -15  8 12 3 -10 
3 8 -10 -3  9 12 8 4 
4 8 -10 -7  10 12 13 1 
5 8 -15 -6  11 12 13 9 
6 12 3 -2      

We processed the fluoroscopy images and computed 
the relative orientation of the femoral component relative 
to the tibial component for each of the 11 cases.  The 
angle of rotation about the horizontal (X) axis was 
computed and compared to the known ground truth lift-off 
angle for each case, shown in Table 3.  In addition, we also 
measured the angle of rotation about the other two axes (Y 
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and Z).  These angles should have been identically zero 
(for the Y axis) and identically 90° (for the Z axis), since the 
femoral component was rigidly mounted with respect to 
the tibial component, except for the single degree of 
freedom rotation about the X axis.  The results are shown 
in Table 4. 

Table 4  Pose errors, real images.  
 Angular error (absolute value) in degrees 

Case X axis (lift-off) Y axis Z axis 

1 0.684 0.346 1.02 
2 11.540 0.240 0.92 
3 0.590 0.266 0.1 
4 2.930 0.027 0.36 
5 0.092 0.613 1.98 
6 16.215 0.306 0.13 
7 0.884 1.772 1.48 
8 0.171 0.147 1.72 
9 18.396 0.706 1.55 
10 0.439 0.360 0.49 
11 2.881 0.653 0.56 

AVG 4.984 0.494 0.937  
RMS  8.275 0.670 1.131 

In Table 4, note the unusually large errors for cases 2, 
6, and 9.  The reason for this is that the pose estimation 
algorithm chose the incorrect library match for several of 
the tibial images.  This is very easy to do because the 
tibial component is very symmetrical about the Y axis.  
Thus, the silhouette for a negative rotation about the Y 
axis is very similar to the silhouette for a positive rotation 
of the same magnitude. 

To correct  this problem, which also arises 
occasionally in processing “in vivo” (patient) images, we 
always verify the correct match by visually inspecting the 
overlay of the model onto the original image.  The operator 
can usually detect mismatches by noticing small errors in 
the overlay.  Another method we use to verify correct 
matches is to check whether the relative poses of the tibial 
and femoral components are consistent.  For example, in 
the case of an incorrect match, the femoral component 
usually intersects the tibial component (a physically 
impossible situation).  

If a matching error is detected, the operator can go 
back and force the system to choose a different match.  
The operator can also make minor adjustments on the 
rotation angles to achieve a better overlay with the image.  
We applied this procedure to our test images and re-
computed the pose errors.  The revised pose error results 
are shown in Table 5.  As can be seen, manually adjusting 
the match resulted in much smaller angular errors.  In our 
experiments, the person performing these operations did 

not have knowledge of the “correct” poses  and thus was 
not biased in choosing a different match or adjusting the 
angles. 

Table 5  Revised pose errors, real images.  
 Angular error in degrees 
 X axis (lift-off) Y axis Z axis 

AVG 0.256 0.145 0.123 
RMS 0.298 0.195 0.240  

 
5.  Conclusions 

 
This paper has described a simple yet effective 

technique for estimating the pose of artificial knee 
implants from X-ray fluoroscopy images.  The pose 
estimation process has been a useful aid for determining 
“in vivo” knee kinematics in implanted knees.  “In vitro” 
experiments show that we can measure lift-off angle with 
an RMS error of about 0.3°.   

One of the limitations is that the entire process 
requires a significant amount of human interaction for 
development of libraries, and external knowledge of the 
implants for contour extraction.  The contour extraction is 
the area where most of the error can be attributed.  This is 
due to human variability in picking the vertices for the 
contour.   
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