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Accurately locating features in images is essential to many problems in computer vision,
including object recognition, pose estimation, and camera calibration. Image centroid
features have been commonly used due to their perceived advantages of accuracy, ease of
processing, and robustness. However, non-linear effects in the projection of object
features to the image plane can cause significant errors in the centroid (i.e., the projected
centroid of the object feature does not coincide with the centroid of the projected image
region), which in turn can cause significant errors in pose estimation and camera
calibration. Two of these effects are the tilt of the object's surface away from the image
plane, and the presence of radial lens distortion. In this work, we analyze the sources and
magnitudes of centroid errors, and describe methods for compensating for the errors.
Three methods were developed to predict centroid errors: a simulator, an approach based
on numerical integration, and a neural network. The first two methods provide accurate
results but are too slow for real time applications. The neural network, on the other hand,
provides less accurate results but is much faster than the first two and is suitable for real
time applications.



1. INTRODUCTION

This paper describes a novel technique for significantly improving the accuracy of centroid-
based image features. Accurately locating features in images is essential to many problems in
computer vision, including object recognition [Besl85]), pose estimation [Hara89], and camera
calibration [Tsai88]. The accuracy of extracted image feature locations directly influences the
accuracy of derived object pose estimates, the accuracy of derived internal camera parameters, and
the reliability of model-based object recognition. In many applications, it is necessary to determine
feature locations to subpixel accuracy to meet given requirements for accuracy of derived results.

One type of feature that can be found to subpixel precision is the centroid of a two-
dimensional image region. Such an image region can arise from the projection of a three-
dimension object feature onto the image plane. These object features can be visually distinctive
markings that are naturally occurring or artificial. A high contrast planar shape such as a dark
circle on a light background is an example of a visually distinctive marking. The image projection
of a feature such as this can be segmented using simple and fast image processing techniques such
as thresholding and connected-component labeling.

In many applications such as manufacturing and inspection, which deal with man-made
objects, the objects already possess visually distinctive markings, or else one has the freedom to
place markings on them. These markings, which are also called landmarks or fiducials, are
positioned in precise known locations relative to each other and to the object. Tasks such as object
recognition and registration are then simplified since only the fiducials need be extracted from the
image. However, the fiducials must be located accurately since all derived results are based on
their image locations.

Although any shape can be used, circular features have been claimed by a number of
researchers to have very desirable properties, such as low spatial quantization error, invariance to
translation and roll, and insensitivity to image noise [Path89, Bose90, O'Gor91]. The centroid of
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its size, image noise, etc [Skla91). Circle centroid features have been used by many researchers
for object recognition, pose estimation, and camera calibration [Tsai89, Lenz89, Tsai88, Com87,
Skla90, Hoff91, Davi87, Abid90]. In our own work, we have used circular features in an
application for NASA's Flight Telerobotic Servicer project. This project required very accurate
visual pose estimation (better than 0.1 inch and 0.3°) in order to verify the positional accuracy of
the robot arm while it was being tested in orbit.

There are many factors which contribute to error in the estimated location of a feature
[Skla91]. Some of these are random errors such as image gray scale noise and spatial quantization
noise, which cannot be compensated for. Other errors are systematic, such as errors in camera
calibration parameters, that can be reduced through the use of an adequate camera model and
calibration procedure [Tsai87, Tsai88).

We have analyzed another source of systematic error that has not been reported in the past,
and also a method for compensating for this error. This error arises from nonlinear effects in the
projective transformation from object points to image points. As a result, the centroid of the
projected image region does not in general coincide with the projection of the centroid of the planar
marking.

One cause of nonlinearity is the perspective projection, which is nonlinear when the surface
of the planar marking is tilted so that it is not parallel to the image plane. The error due to surface
tilt can be several pixels in magnitude, depending on the size and pose of the planar marking.

For example, Figure 1 shows a perspective projection of a planar circular region, tilted
approximately 35° away from the image plane. This is an actual digitized image from an RS-170
CCD video camera with an 8 mm lens. One can see that the image region corresponding to the
circle is not a true ellipse (as would be the case for a linear or affine transformation), but is
asymmetrically elongated in one direction. At the center of the circle is a small white dot. The
centroid of the projected image region is marked by the crosshair at the lower left. For this
particular case, the centroid of the projected image region (marked by the left crosshair) differs by

about 14 pixels from the projected circle center (marked by the right crosshair over the small white



dot). Although this example uses an artificially large image region for illustrative purposes, which
exaggerates the centroid error, even small image regions can have centroid errors that are larger
than that which would be due to image or spatial quantization noise alone.

The fact that the centroid error occurs when the surface is tilted is especially troublesome
for three-dimensional recognition, pose estimation, and calibration applications that make use of
co-planar target features. First of all, in these applications one cannot in general constrain the
target surface to be parallel to the image plane. Secondly, some algorithms in fact require that the
target surface not be exactly parallel to the image plane, since they experience singularities in these
cases [Tsai87, Abid90]. Finally, some pose estimation algorithms are actually most accurate when
the target surface is tilted at an angle of 45° from the image plane [Kris91, Yuan89].

Another cause of nonlinearity, that is independent of surface tilt, is lens distortion. With
lens distortion, even if the surface of a circular feature is parallel to the image plane, it will still not
project to a circular region in the image. For example, radial lens distortion will cause the region to
be asymmetrically elongated along the radial direction. Radial lens distortion is present in most
off-the-shelf camera lenses, but can be calibrated [Tsai87]. Again, depending on the size and
location of the image region, the centroid error due to lens distortion can be significantly larger than
that which would be due to image or spatial quantization noise alone.

The centroid error due to these effects, surface tilt and lens distortion, is entirely
deterministic and can be predicted, given knowledge of the location and tilt of the surface marking,
its shape and size, and the camera model. This suggests an approach in which object pose (and the
camera model, if desired) is first estimated without regard for the centroid errors. These
approximate results are used to predict the centroid emrors. Then the centroids are adjusted to
compensate for the errors due to surface tilt and lens distortion, and a more refined and accurate
pose (and camera model, if desired) is recomputed. Note that one must have an a priori model of
the object and the target features in order to use this technique.

We have implemented just such a technique in our work and have used it to improve

centroid accuracy and object pose estimates. In fact, we applied it to the example shown in Figure



1 to compensate for the centroid error and calculated a more accurate estimate of the circle center.
This improved estimate is marked by the crosshair on the right, which as can be seen in Figure 1,
lies directly over the true circle center, which is marked by the small white dot. In this example,
we first calculated the pose of the circle, using the monocular projection of the four small outer
black circles, and the known geometric model of the four circles [Hung85]. Using this pose and
the known model of the large circle, we predicted the centroid error of the large circle and corrected
the original extracted image centroid by this amount.

The rest of this paper describes the methods we have developed to predict centroid error,
given an estimate of the surface tilt and the camera model, and gives example results. We have
developed two independent methods — one based on simulation and the other based on numerical
integration. The results from these two methods agree to a high degree of precision. We have also
developed a third method based on a neural network, that was trained using the numerical
integrator. The neural network gives less accurate results, but is computationally much faster than
the first two methods, and is suitable for real time pose estimation and object tracking.

All three methods predict centroid errors for circular features of any size and at any position
and orientation. Although we have exclusively used circle features in our work, our method is
applicable to planar features of any shape, as long as the shape is known. However, the neural
network would have to be retrained for features other than circles.

Thus, our method is fast, applicable to any planar features, and demonstratably improves
pose estimation. To our knowledge, there has been no other previous work on this specific
subject. Although other researchers have studied centroid errors due to quantization and noise, this
is the first work that we know of that has analyzed centroid errors due to surface tilt and lens
distortion. Our results should be useful to anyone who needs to perform accurate three-

dimensional vision metrology based on the image projection of planar features.



2. NOTATION AND STATEMENT OF PROBLEM

This section formally states the problem of centroid error prediction, and introduces
notation that will be used consistently through the next three sections. The next three sections will
describe the simulator, the numerical integrator, and the neural network, respectively.

Let R be a two dimensional planar closed region of arbitrary shape and size, embedded in a
three dimensional space (Figure 2). Define a three dimensional orthonormal coordinate frame {R}
attached to this region, with coordinates (&, v, w). Let the origin of this frame, Op, be located at
the center of mass (centroid) of the region. Also restrict the axes (,v) to lie in the plane of R,
which means that the third axis, w, is perpendicular to the plane.

Now consider an imaging sensor that is projecting the region onto an image plane. We will
use a pinhole camera model for the purpose of discussion, although there is nothing that precludes
more complex camera models. Define a three dimensional orthonormal coordinate frame {C)
attached to the camera, with coordinates (X,Y,Z). Also define a two dimensional coordinate
system {/} on the image plane, with coordinates (x,y). If the camera is properly calibrated, there
is a known mapping g from three dimensional points (X,Y,Z) to the image plane (x,y); i.e.,

g R*>— R*. For example, in the case of the pinhole camera, the mapping is simply the

perspective projection equations

g(X.Y.Z)=(x.y)=(f§.f§) M

where f = focal length. Here, we have assumed that the origin of {C}, O, is at the center of
projection of the pinhole camera, and the origin of {I} is at the optical center; that is, the
intersection of the image plane with the perpendicular to O.

Let the transformation from the region's coordinate frame {R} to the camera's coordinate
frame {C} be denoted as H. Specifically, if Py is a point whose coordinates are in the {R} frame,
H transforms it so that its coordinates are in the {C} frame. If using homogeneous coordinates,
Pp=(Xg, Yp Zp, DT, Pc=(Xc, Yo, Z¢, 1), and

Pc=H Py (2)



where H is a 4x4 homogeneous transformation matrix. Given these definitions and relationships,
the projection of a single point in region R onto the image plane is given by
(x.y) =g (H Pp) (3)
Let the image projection of the origin of {R}, which is the projection of the point Op, be
denoted as ’OR. The projection of the entire region R onto the image plane is a region R such that
'R= {(x, y):(x.y)=g(HF,), VP € R} @)
Assume that the image on the image plane is segmented so that the projected region IR is
extracted exactly. (We will ignore all real world error sources such as spatial quantization, gray
level noise, optical blurring, efc; since our goal is to isolate the effect of surface tilt and camera
model.) Let the centroid of 'R be denoted as ’CR. This point will not in general be equal to the
point ! Op.
We can now state the problem as follows: Given knowledge of the size and shape of
region R, an estimate of its transformation with respect to the camera H, and the mapping function
8(X,Y,Z), determine the two dimensional error vector between the image projection of its centroid,

'OR, and the centroid of the projected region, ’CR.

3. SIMULATOR

We first developed a simulator to predict the centroid errors because it was easy to
implement, although the running time is quite slow. The simulator performs a *brute-force”
projection of the fiducial feature to the image plane and directly calculates the centroid of the
synthesized projected image region. Although we have only worked with circular features, any
planar shape can be used.

The simulator takes as input the estimated (X, Yy, Z)) location of the circle's center in the
camera's coordinate frame {C}, the estimated surface normal direction, the radius p of the circle,
and either a pinhole camera model or a Tsai camera model. The parameters of the Tsai camera

model include the focal length, the inter-pixel spacing of the CCD elements in X and Y, the size of



the digitized image in pixels, radial lens distortion, and the location of the optical center in the
image. In the discussion for the remainder of this section, we use a pinhole camera model.
The simulator computes the first order moments (centroid) of the circle's projection using

the standard equations (assuming a binary image):

g g o

where A = area of the projected image region IR, and AA = the area of the discrete elements used in
the summation.

Given a point Py = (x,y) on the image plane, the vector from P, through the origin O¢
(focal point) is v = (=x, =y, -f), where f = focal length. A point Pp = (X, Y, Z) is on the vector v
if there exists some scalar ¢ such that ¢ v = Pp. The point Py, is also on the plane of the fiducial
region if it satisfies the equation AX + BY + CZ =D (where (A, B, C) is the unit surface normal
of the plane, and D is the perpendicular distance from the plane to the origin). Substituting rv =
Pp into the equation of the plane, we have

t =—DJ(Ax+ By +Cf) (6)
and thus Py can be computed. A point Py is inside the circle fiducial if it is within p of the center.
A synthetic projection of the circle is generated by this method, and then the centroid of the
synthesized image region is found.

Spatial quantization error can be reduced by increasing the resolution of the pixel grid
[Path89]. In our implementation, each pixel is subdivided to a user specified resolution, such as a
14x14 or a 254x254 grid. Each subdivided point is used in the computation of the centroid
moments. Figure 3 shows the effect of increasing the resolution. Specifically, it shows how the

centroid changes as the subpixel resolution is increased, for a typical range of configurationsl.

IThe circle had a radius of 1 cm, the pan and tilt angles were combinations of 0°, 15°, 30°, and 45°, the focal length
was | cm, and the CCD pixels were square and 0.0013 cm on a side. The circle center location was randomly varied

in X and Y, with a fixed Z distance of 10 cm, for a total of 896 cases allogether.



The numbers displayed are the maximum differences between the computed centroid at the finest
254x254 subpixel resolution and the computed centroid at coarser resolutions (only the x
difference is shown, the y difference is essentially the same). The results indicate that increasing
the resolution beyond about 10x10 has very little effect on the centroid. For subpixel resolutions
of greater than 10x10, the centroid results are within 0.001 pixel. Beyond 30x30, the results are
within 0.0005 pixel.

Although the simulator was easy to implement and is very general, it is too slow to use for
a real time (i.e., video rate) application. The running time to predict the centroid error for a
particular case depends on the size of the circle and also on the subpixel resolution chosen. As an
example, for the configuration that was used to generate the results in Figure 3, and at a subpixel
resolution of 34x34, the running time on a Solbourne 5/501 workstation was about 14.9 seconds.
This workstation is compatible with a Sun SPARC station, and is rated at about 22 MIPS and 3.4
MFlops.

In an effort to devise a faster centroid error predictor, and also to verify the results of the
simulator, we developed an approach that was based on numerical integration. This is discussed in

the next section.
4. NUMERICAL INTEGRATOR

This approach was based on evaluating the following integrals:

%= (%)‘[’J:xdxdy. y= (—}) J:;!ydxdy, A= j'nj dxdy 0

where 'R is the image region of the projected fiducial (in our case, a circle). Since the shape and
size of the projected image region is unknown, we change the problem so that we can integrate
over the known fiducial region, R, instead. This can be done using the well-known change of

variable theorem for transforming multiple integrals [Buck78]:



Theorem: Let T be a continuously differentiable transformation from 2-space into 2-
space, with T(u,v) = (x,y), which is 1-to-1 in an open set Q with a non-zero Jacobian (J(p) #0)
throughout Q2. Let D* be a closed bounded set in xy-space which is the image under T of a set

D c Q. Letfbe a continuous function on D*. Then,
H f(x,y)dxdy = U F(T ()| (u,v)|dudv (8)
D* D

To cast our problem in the framework of this theorem we first replace function f with the
continuous moment functions f(x,y) = x™y", where m,n € (0,1}. The transformation T is the
composition of the camera perspective transformation g with the homogeneous transform H
describing the pose of the target in camera coordinates (as given in Equation 3 of Section 2). In
this work, we used only the pinhole camera model for the transformation g. We define the
domain, D, of the transformation T, to be the set of points (u,v) inside the boundary of the target.
The co-domain of T, T(D) = D*, is therefore the subset of the image plane corresponding to the

projection of the target. The determinant of the Jacobian of T was evaluated directly using the

Mathematica® package to be:
&x o
2 2 -
|J(u.v)|= o  ou =_—2f (ZR 3!‘0
gxu z () 9)

where Z, is the unit vector describing the z-axis of the target's coordinate frame (the target surface
normal), ry is the vector to the center of the target Op (in camera coordinates), z is the z-
component of the point (4,v) in camera coordinates, and f is the camera focal length.

In order to apply the change of variable theorem we must show that all its conditions on T
are satisfied. First, observe that the transformation T is continuously differentiable when z (u,v) =
0 for every point on the target. This simply means that the target in camera coordinates does not
intersect the image plane. To show that T is an injection we notice that no two points on a planar

surface project to the same image point unless the surface normal is orthogonal to the line of sight



from the camera's focal point to a surface point. This condition corresponds to degenerate views
resulting from positioning the target such that only its edge is visible. This constraint is explicitly
obtained from the condition |J(u,v)|# 0 which occurs only if Z,-r, # 0.

We may now state the result applied to the case where the target is a circular region of

radius p as the following:

p \p*-v m n
m..n - F25 . x(u,v) y(u,v)
J;‘[x y'dxdy = f (ZR l'o):[, _ p!_, zc(u,v)3 dudv (10)

where x(u,v) and y(u,v) are the image-plane coordinates of the projection of the target point (1,v),
using the expressions given in Section 2. Integrals of this form can be evaluated using standard
numerical quadrature techniques. We implemented a solution using an IMSL® routine?, and
found that the results agreed very closely with those from the simulator.

Figure 4 shows a plot of the difference between the centroid error computed by the
simulator and the numerical integrator. The data is from the 896 cases plotted in Figure 3, but this
time showing the maximum difference between the integration result and the simulator result at the
various resolutions. The same pinhole camera model was used for both the simulator and the
numerical integrator. Again, only the x difference is shown; the y difference is essentially the
same. The maximum difference between the integration and simulation results, at the simulator
sub-pixel resolution of 254x254, is 0.0000185 pixels (2.405E-7 mm). Since the integrator and the
simulator agree so closely at the fine resolution, it is not surprising that the plots shown in Figures
3 and 4 are nearly identical.

The numerical integrator is much faster than the simulator and its accuracy does not depend

on the resolution. For the same configuration used in Section 3, the running time on the same

2we used the IMSL routine DTWODQ, with the ERRABS parameter (absolute accuracy desired) set to 1.0E-12,
ERRREL (relative accuracy desired) set to 1.0E-12, and IRULE set to 2 (specifying a Gauss-Kronrod quadrature rule
with 10-21 points). The ERREST (estimate of the absolute value of the error) output was less than 1.0E-13 for all

results.
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workstation was about 2.7 seconds (as compared to 14.9 seconds for the simulator). However,
this is still not fast enough for real time (i.e., video rate) operation. We thus developed the neural

network predictor described in the next section in order to achieve the necessary speed.

4. NEURAL NETWORK

Neural networks can be trained to approximate underlying multivariable functions. The
approximation is accomplished using sample input-output data to adjust network parameters during
supervised training. Several network architectures for function approximation are described in the
literature. Approaches with feed-forward nets include multi-layer backpropagation [Lape87],
radial basis function nets using Gaussian activations [Park91], and CMAC (Cerebellar Model
Articulation Controller) networks with B-spline receptive fields [Lane91]. Although we evaluated
some of these network models, another network model called Multivariate Adaptive Regression
Splines (MARS) produced better results [Frie91a and Frie91b] for this application. MARS
estimates cubic spline basis functions with recursive partitioning of the input space, uses statistical
learning (least squares) instead of gradient descent, and predicts performance on test data during
training using a cross-validation model to improve values of network parameters.

Function approximation with spline (local approximating polynomial) methods [DeBo78]
has advantages over other methods, such as capturing local information, and splines are most
successful when the input space is partitioned appropriately. After partitioning the input space into
separate regions, cubic (or other degree) polynomials are constructed in each region such that the
approximating function and its first two derivatives are continuous on the boundaries. The
difficulty with applying conventional spline methods, especially for multivariate functions, is
determining a good partition of the input space. The tensor-product spline approach partitions each
input axis with k points ("knots") and the tensor product of the subintervals is formed, resulting in

(k+q+1)" basis functions, where q is the polynomial degree (3 in this paper), and n is number of
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input variables. For most applications this is too many basis functions, causing computational and
weight-fitting problems.

The MARS algorithm uses statistical training and recursive partitioning to reduce the high
number of tensor-product splines to a reasonable number of basis functions. In the adaptive spline
net there are m basis functions B,,;, each with weight wy,. The output of the entire network is the

weighted sum (11) which approximates the desired function f{x;, x2, ..., x).

- M
f® =Y wB. (%) X=(x,X5m.0X,) (11)
m=0
K,
B (%) =[[l(xj(k)"kj)2 (12)
0, x.<t¢,.
(x,--rk,-)1={ N (13)

(x j_‘kj)q' X2ty

Each basis function (12) is a product of simple functions, called truncated power
functions, given by (13), where ;; is the location of the kth knot on the jth axis, and Ky, is the
number of factors in the product (basis function interaction level). The net is an ordered set of
interconnected units, with each unit receiving all system inputs (xj, x2, ..., x»). Each adaptive
spline unit produces two outputs Bi(¢ = x;){ and By(x j—t )3 that are available for input selection
by all succeeding units. A bias unit is also available to all units. A simple schematic of a spline net
is shown in Figure 5.

From the large number of possible basis functions, the training selects a small subset
through statistical variable subset selection. The training goal is to choose values for network
parameters (weights, knot locations, and input variables for each unit) that minimizes future
prediction error, which is estimated from the generalized cross-validation model selection criterion

N 2
ch=%2(x—ﬁ)’/[l—§%—ﬂ] (14)
-

where N is the number of training samples, y; is desired output, f; the approximation, and Ny, is

the number of units. Training is semi-greedy, with units considered in order. The GCV criterion
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is minimized with respect to the parameters of the ik unit and all previous weights. This
optimization is performed by least squares, repeating the process until a specified maximum
number of units have been added. Weight elimination is then applied to select an optimal set of
weights. Results with MARS show the adaptive spline approach, with the GCV criterion adjusting
net parameters during training based on expected test performance, can produce system models that
yield highly accurate function approximations for system identification. In addition, the MARS
results also provides insight into how the system works, for example, by showing which input
variables contribute most to the solution, and how the variables interact. Understanding results
and interpreting models from other networks such as backpropagation is more difficult.

Training and testing data were generated with the IMSL-based numerical integrator
described in the previous section. Normally seven input variables are used to predict centroid
error: focal length; the estimated (X,,Y,.Z,) location of the circle center; the radius of the circle;
and the pitch and yaw angles (surface tilt). (Roll is not needed since the circles are symmetric.)
These seven input variables were reduced to five by scaling the centroid error results in units of
focal length, and by scaling X, Y, and radius in units of Z,. Input variables were constrained to
typical ranges for circle sizes and the field of vision of the camera. Ranges of the scaled inputs are
shown in Table 1.

Table 1. Ranges of Input Variables

Input Variable Minimum Value | Maximum Value
Xo (in units of Z,) 0.4 0.4
Y (in units of Z) 0.4 0.4
Radius (in units of Z;) 0.02 0.1
Pitch (degrees) —40.0 40.0
Yaw (degrees) —40.0 40.0
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Two outputs are produced: centroid errors in x and y directions. The outputs are given in
units of focal length. In the training data, these both ranged from —-0.006604 to 0.006604 (units of
focal length). The input sampling scheme yields key features in about 100 samples, while
remaining samples have slight variations to provide local detail, which is important in this
application. Test data was generated using different sampling schemes, to assess if training was
biased by sampling. Median centroid error values are 3 magnitudes smaller than the extreme
values, causing difficulties for alternative training approaches, such as backpropagation which
doesn't account for all local information. Several training and testing files were used, representing
the entire workspace as well as selected subspaces. Input and output data were normalized for
faster training. Two spline networks were used: one for x-error and one for y-error, each having 5
inputs, 1 ouput, and the number of spline units determined by MARS parameters. These two nets
are independent and can operate in parallel, although they can also be combined into 1 network
with two outputs.

Training time with MARS on the Solbourne workstation ranged from 15 minutes for small
nets to 3 hours for large nets with large training files. MARS training time was a fraction of the
time required for backpropagation nets to converge with less accuracy on same files (although
second-order and/or orthogonal pre-processing methods can be used to speed up backpropagation
convergence). The trained MARS network performed very fast, computing x-error and y-error in
less than 10 msec. Accuracy results are shown in Table 2. All results used cubic splines with up
to 3 variable interactions allowed in each basis function.

Accuracy on test data is very good, and in some cases actually better than training accuracy,
due in part to the effects of GCV on training. Some training bias is observed by comparing tests
(B) and (C). Samples for test (B) were generated similar to the training data (same method,
different points over entire input space), while data for test (C) was generated in a different manner
in a subspace. Training case (H), and test cases (I) and (J) used the same files as cases (A), (B)
and (C). By using more spline units, higher accuracy is obtained and training bias is nearly

eliminated. Training and testing results for y-error are similar to those shown in Table 2.
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Table 2. MARS Training and Testing Results for x-error

Train/ # of # of % < 0.0001
Case Test DataPoints Spline Units GCvV RMS Max abs error
A. tra 1000 23 7.5E-3 7.5E-5 29E-4 82.6
B. tst 500 23 - 7.7E-5 2.7E-4 80.6
C. tst 576 23 - 1.1E-5 44E-4 75.5
D. tra 3125 26 5.4E-3 7.0E-5 3.2E-4 84.0
E. tst 576 26 - S.0E-5 1.7E-4 94.8
F. tra 4000 23 3.0E-3 5.3E-5 3.2E4 93.1
G. tst 576 23 - 4,2E-5 2.1E-4 96.2
H. tra 1000 65 8.7E-4 1.8E-5 7.2E-5 100
L tst 500 65 - 2.5E-5 1.5E-4 99.6
J. tst 576 65 - 2.7E-5 1.8E-4 98.8

From the table, we conclude that this initial neural network system can predict centroid
error to within about 1x10- units of focal length. The network can be refined to produce higher
accuracy. For the typical values that were used in Sections 2 and 3, the focal length was 1 cm and
the pixels on the image plane were square and measured 0.0013 cm on a side. The error of 1x104
thus corresponds to about 0.077 pixels. The accuracy to which the neural net can predict centroid
errors is thus about equal to the precision of which centroids can be extracted from images,
meaning that it is accurate enough for practical usage. The next section describes the results of a

set of experiments.
5. EXPERIMENTS

In this section, we provide a sampling of experimental results to show the magnitude of
centroid errors and their effect on pose estimation. Since quantitative results like these are specific
to a particular object and sensor configuration, we can only provide representative data to give an

indication of the general magnitude of the errors.
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As discussed earlier, two causes of centroid error are the surface tilt away from the image
plane, and radial lens distortion. To show the effects of these two causes, we ran two separate
simulations and varied these two parameters.

Figure 6 shows the effect of tilt angle on the centroid error. In this example, a circle was
held fixed at a location along the optical axis of the camera, and it was tilted at angles ranging from
0° to 80° in the direction of the positive X-axis. The centroid errors in the image x-direction are
plotted in Figure 6 as a function of tilt angle (the errors in the y-direction were zero). Four separate
circle radii were tested, with the ratio of radius-to-range equal to 0.02, 0.06, 0.10, and 0.14. For
the camera model, we used the same pinhole camera model used earlier, with “typical” camera
parameters of focal length = 1 cm and pixel size = 0.0013 cm on a side. The results show that the
centroid errors are significant for the circle radius of 0.06 and above, and also that they peak at an
angle of 45°. To give an idea of the size of these circles, the circle of radius 0.06 would have a
projected image radius of 46 pixels (at a tilt angle of 0°).

Figure 7 shows the effect of radial lens distortion on the centroid error. In this example, a
circle with a radius-to-range ratio of 0.10 was moved horizontally parallel to the image plane, at a
constant range Z,. The pan and tilt angles were 0°; i.e., the circle was parallel to the image plane.
The circle was moved such that X,/ Z, varied from 0.0 to 0.25, in increments of 0.05. The
centroid errors in the image x-direction are plotted in Figure 7 as a function of X,/ Z, (the errors in
the y-direction were zero). The Tsai camera model was used, with four separate values for the lens
distortion coefficient3: {-0.0009, -0.0018, -0.0049, -0.0112} (the values are unit-less). These
values for radial lens distortion were actual values that we have obtained from calibrating real
cameras and lenses in our lab. The focal length was again 1 cm and pixel size = 0.0013cmon a

side. The results show that the centroid errors increase almost linearly outward from the image

3Using Tsai's definition [Tsai88]), the lens distortion coefficient x relates distorted image points (XgYg) 10
undistorted points (X,,.¥,,) via the equations (X4.Y4) = (2X,/D, 2Y /D), where D = 1 + (1 - 4xR, )2, and R 2 =
X2 +7,2

u |1
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center, and at the edge of the image, they are relatively large for each of the tested values of lens
distortion.

As a final example, we performed a simulation to test the effect of centroid error on pose
estimation. We created a planar target consisting of four circle features arranged in a rectangle,
measuzing 5 cm by 4 cm. Each circle had a radius of 1 cm. This target was placed at a range of 10
cm and at an angle of 45° with respect to the camera. The camera had a focal length of 0.8 cm and
a lens distortion of -0.0019. The projected circles fit completely inside the 560x480 pixel image.
The centroid errors of the circles vary from about 1.7 pixels to about 4.1 pixels. The pose was
computed from the image locations of the four target circles [Xu90]. The centroid errors cause the
pose to have an error of about 0.33° and 0.02 cm. With the techniques described in this paper,

these errors can be compensated for.

6. CONCLUSIONS

This paper has described a set of techniques for significantly improving the accuracy of
image centroid features. Two specific causes of centroid errors are surface tilt and lens distortion.
The techniques should be of interest to anyone that is interested in improving the accuracy of pose
estimation and camera calibration results that are derived from image centroid features. We have
described three methods: the first method, using a simulator, is easy to implement and can provide
accurate (though slow) results. The second method, based on numerical integration, is faster but
conceptually more complicated. The third method, using a neural network, is not as accurate but is

fast enough for real time applications.
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Figure 1. An actual digitized image showing the error between the computed image centroid
(left crosshair) and the true projected center of the circle (small white dot under right
crosshair). The right crosshair marks the corrected centroid location.
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Figure 2. Projection of a planar fiducial region R onto the image plane using a

pinhole camera model.
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Effect of Subpixel Resolution on Centroid
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Figure 3. Maximum difference between the centroid computed using subpixel
resolution 254x254 and centroids computed using coarser resolutions, using the
simulator.
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Figure 4. Maximum difference between centroids computed using the simulator,
at varying subpixel resolutions, and the centroids computed using the numerical
integraltor.
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Figure 5. Adaptive spline neural network for predicting centroid error.

25




Effect of Tilt Angle on Centroid Error
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Figure 6. Effect of surface tilt away from the image plane, for a set of circle fiducials
with fixed radii, located at a fixed distance along the camera’s optical axis.
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Effect of Radial Lens Distortion on Centroid Error
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Figure 7. Effect of different values of radial lens distortion, for different locations of a
circle fiducial .
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